| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2atnelpln | Structured version Visualization version GIF version | ||
| Description: The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012.) |
| Ref | Expression |
|---|---|
| 2atnelpln.j | ⊢ ∨ = (join‘𝐾) |
| 2atnelpln.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2atnelpln.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| 2atnelpln | ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39323 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | 2atnelpln.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | 2atnelpln.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 3, 4, 5 | hlatjcl 39327 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 7 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | 3, 7 | latref 18455 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
| 9 | 2, 6, 8 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
| 10 | simpl1 1191 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → 𝐾 ∈ HL) | |
| 11 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → (𝑄 ∨ 𝑅) ∈ 𝑃) | |
| 12 | simpl2 1192 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → 𝑄 ∈ 𝐴) | |
| 13 | simpl3 1193 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → 𝑅 ∈ 𝐴) | |
| 14 | 2atnelpln.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 15 | 7, 4, 5, 14 | lplnnle2at 39502 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((𝑄 ∨ 𝑅) ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
| 16 | 10, 11, 12, 13, 15 | syl13anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → ¬ (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑄 ∨ 𝑅) ∈ 𝑃 → ¬ (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅))) |
| 18 | 9, 17 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 lecple 17280 joincjn 18327 Latclat 18445 Atomscatm 39223 HLchlt 39310 LPlanesclpl 39453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-lat 18446 df-clat 18513 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 |
| This theorem is referenced by: islpln2a 39509 |
| Copyright terms: Public domain | W3C validator |