![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2atnelpln | Structured version Visualization version GIF version |
Description: The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012.) |
Ref | Expression |
---|---|
2atnelpln.j | β’ β¨ = (joinβπΎ) |
2atnelpln.a | β’ π΄ = (AtomsβπΎ) |
2atnelpln.p | β’ π = (LPlanesβπΎ) |
Ref | Expression |
---|---|
2atnelpln | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β Β¬ (π β¨ π ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38891 | . . . 4 β’ (πΎ β HL β πΎ β Lat) | |
2 | 1 | 3ad2ant1 1130 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β πΎ β Lat) |
3 | eqid 2725 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
4 | 2atnelpln.j | . . . 4 β’ β¨ = (joinβπΎ) | |
5 | 2atnelpln.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
6 | 3, 4, 5 | hlatjcl 38895 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π ) β (BaseβπΎ)) |
7 | eqid 2725 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
8 | 3, 7 | latref 18432 | . . 3 β’ ((πΎ β Lat β§ (π β¨ π ) β (BaseβπΎ)) β (π β¨ π )(leβπΎ)(π β¨ π )) |
9 | 2, 6, 8 | syl2anc 582 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π )(leβπΎ)(π β¨ π )) |
10 | simpl1 1188 | . . . 4 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β¨ π ) β π) β πΎ β HL) | |
11 | simpr 483 | . . . 4 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β¨ π ) β π) β (π β¨ π ) β π) | |
12 | simpl2 1189 | . . . 4 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β¨ π ) β π) β π β π΄) | |
13 | simpl3 1190 | . . . 4 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β¨ π ) β π) β π β π΄) | |
14 | 2atnelpln.p | . . . . 5 β’ π = (LPlanesβπΎ) | |
15 | 7, 4, 5, 14 | lplnnle2at 39070 | . . . 4 β’ ((πΎ β HL β§ ((π β¨ π ) β π β§ π β π΄ β§ π β π΄)) β Β¬ (π β¨ π )(leβπΎ)(π β¨ π )) |
16 | 10, 11, 12, 13, 15 | syl13anc 1369 | . . 3 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β¨ π ) β π) β Β¬ (π β¨ π )(leβπΎ)(π β¨ π )) |
17 | 16 | ex 411 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π ) β π β Β¬ (π β¨ π )(leβπΎ)(π β¨ π ))) |
18 | 9, 17 | mt2d 136 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β Β¬ (π β¨ π ) β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5143 βcfv 6543 (class class class)co 7416 Basecbs 17179 lecple 17239 joincjn 18302 Latclat 18422 Atomscatm 38791 HLchlt 38878 LPlanesclpl 39021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-lat 18423 df-clat 18490 df-oposet 38704 df-ol 38706 df-oml 38707 df-covers 38794 df-ats 38795 df-atl 38826 df-cvlat 38850 df-hlat 38879 df-llines 39027 df-lplanes 39028 |
This theorem is referenced by: islpln2a 39077 |
Copyright terms: Public domain | W3C validator |