![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2atnelpln | Structured version Visualization version GIF version |
Description: The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012.) |
Ref | Expression |
---|---|
2atnelpln.j | ⊢ ∨ = (join‘𝐾) |
2atnelpln.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2atnelpln.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
2atnelpln | ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39321 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝐾 ∈ Lat) |
3 | eqid 2740 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 2atnelpln.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | 2atnelpln.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 3, 4, 5 | hlatjcl 39325 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
7 | eqid 2740 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 3, 7 | latref 18513 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
9 | 2, 6, 8 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
10 | simpl1 1191 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → 𝐾 ∈ HL) | |
11 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → (𝑄 ∨ 𝑅) ∈ 𝑃) | |
12 | simpl2 1192 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → 𝑄 ∈ 𝐴) | |
13 | simpl3 1193 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → 𝑅 ∈ 𝐴) | |
14 | 2atnelpln.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
15 | 7, 4, 5, 14 | lplnnle2at 39500 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((𝑄 ∨ 𝑅) ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
16 | 10, 11, 12, 13, 15 | syl13anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∨ 𝑅) ∈ 𝑃) → ¬ (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅)) |
17 | 16 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑄 ∨ 𝑅) ∈ 𝑃 → ¬ (𝑄 ∨ 𝑅)(le‘𝐾)(𝑄 ∨ 𝑅))) |
18 | 9, 17 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 lecple 17320 joincjn 18383 Latclat 18503 Atomscatm 39221 HLchlt 39308 LPlanesclpl 39451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-proset 18367 df-poset 18385 df-plt 18402 df-lub 18418 df-glb 18419 df-join 18420 df-meet 18421 df-p0 18497 df-lat 18504 df-clat 18571 df-oposet 39134 df-ol 39136 df-oml 39137 df-covers 39224 df-ats 39225 df-atl 39256 df-cvlat 39280 df-hlat 39309 df-llines 39457 df-lplanes 39458 |
This theorem is referenced by: islpln2a 39507 |
Copyright terms: Public domain | W3C validator |