![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uznfz | Structured version Visualization version GIF version |
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
Ref | Expression |
---|---|
uznfz | ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 12074 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
2 | eluzel2 12066 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
3 | elfzel1 12726 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
4 | elfzm11 12797 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | simp3 1118 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
6 | 4, 5 | syl6bi 245 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
7 | 6 | impancom 444 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑁 − 1))) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
8 | 3, 7 | mpancom 675 | . . . 4 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
9 | 2, 8 | syl5com 31 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
10 | eluzelz 12071 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
11 | zre 11800 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
12 | zre 11800 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
13 | ltnle 10522 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
14 | 11, 12, 13 | syl2an 586 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
15 | 10, 2, 14 | syl2anc 576 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
16 | 9, 15 | sylibd 231 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑁 ≤ 𝐾)) |
17 | 1, 16 | mt2d 134 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2050 class class class wbr 4930 ‘cfv 6190 (class class class)co 6978 ℝcr 10336 1c1 10338 < clt 10476 ≤ cle 10477 − cmin 10672 ℤcz 11796 ℤ≥cuz 12061 ...cfz 12711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-n0 11711 df-z 11797 df-uz 12062 df-fz 12712 |
This theorem is referenced by: fzdif2 30267 ballotlemfp1 31395 poimirlem27 34360 mblfinlem2 34371 |
Copyright terms: Public domain | W3C validator |