MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcoll2 Structured version   Visualization version   GIF version

Theorem seqcoll2 13996
Description: The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
seqcoll2.1 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
seqcoll2.1b ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
seqcoll2.c ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
seqcoll2.a (𝜑𝑍𝑆)
seqcoll2.2 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
seqcoll2.3 (𝜑𝐴 ≠ ∅)
seqcoll2.5 (𝜑𝐴 ⊆ (𝑀...𝑁))
seqcoll2.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcoll2.7 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
seqcoll2.8 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
Assertion
Ref Expression
seqcoll2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑛,𝐻   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑘,𝑁   + ,𝑘,𝑛   𝑆,𝑘,𝑛   𝑘,𝑍
Allowed substitution hints:   𝐻(𝑘)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem seqcoll2
StepHypRef Expression
1 seqcoll2.1b . . 3 ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
2 fzssuz 13118 . . . 4 (𝑀...𝑁) ⊆ (ℤ𝑀)
3 seqcoll2.5 . . . . 5 (𝜑𝐴 ⊆ (𝑀...𝑁))
4 seqcoll2.2 . . . . . . . 8 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
5 isof1o 7110 . . . . . . . 8 (𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
64, 5syl 17 . . . . . . 7 (𝜑𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
7 f1of 6639 . . . . . . 7 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:(1...(♯‘𝐴))⟶𝐴)
86, 7syl 17 . . . . . 6 (𝜑𝐺:(1...(♯‘𝐴))⟶𝐴)
9 seqcoll2.3 . . . . . . . . . 10 (𝜑𝐴 ≠ ∅)
10 fzfi 13510 . . . . . . . . . . . . 13 (𝑀...𝑁) ∈ Fin
11 ssfi 8829 . . . . . . . . . . . . 13 (((𝑀...𝑁) ∈ Fin ∧ 𝐴 ⊆ (𝑀...𝑁)) → 𝐴 ∈ Fin)
1210, 3, 11sylancr 590 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
13 hasheq0 13895 . . . . . . . . . . . 12 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1412, 13syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1514necon3bbid 2969 . . . . . . . . . 10 (𝜑 → (¬ (♯‘𝐴) = 0 ↔ 𝐴 ≠ ∅))
169, 15mpbird 260 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐴) = 0)
17 hashcl 13888 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1812, 17syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
19 elnn0 12057 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2018, 19sylib 221 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2120ord 864 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0))
2216, 21mt3d 150 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ)
23 nnuz 12442 . . . . . . . 8 ℕ = (ℤ‘1)
2422, 23eleqtrdi 2841 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ (ℤ‘1))
25 eluzfz2 13085 . . . . . . 7 ((♯‘𝐴) ∈ (ℤ‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
2624, 25syl 17 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
278, 26ffvelrnd 6883 . . . . 5 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴)
283, 27sseldd 3888 . . . 4 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁))
292, 28sseldi 3885 . . 3 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀))
30 elfzuz3 13074 . . . 4 ((𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
3128, 30syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
32 fzss2 13117 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))) → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3433sselda 3887 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → 𝑘 ∈ (𝑀...𝑁))
35 seqcoll2.6 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
3634, 35syldan 594 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹𝑘) ∈ 𝑆)
37 seqcoll2.c . . . 4 ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
3829, 36, 37seqcl 13561 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) ∈ 𝑆)
39 peano2uz 12462 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
4029, 39syl 17 . . . . . . 7 (𝜑 → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
41 fzss1 13116 . . . . . . 7 (((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀) → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4240, 41syl 17 . . . . . 6 (𝜑 → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4342sselda 3887 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
44 eluzelre 12414 . . . . . . . . 9 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4529, 44syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4645adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
47 peano2re 10970 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ ℝ → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
49 elfzelz 13077 . . . . . . . . 9 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℤ)
5049zred 12247 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℝ)
5150adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ℝ)
5246ltp1d 11727 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < ((𝐺‘(♯‘𝐴)) + 1))
53 elfzle1 13080 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5453adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5546, 48, 51, 52, 54ltletrd 10957 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < 𝑘)
566adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
57 f1ocnv 6651 . . . . . . . . . . . . . 14 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
59 f1of 6639 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto→(1...(♯‘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
6058, 59syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
61 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝑘𝐴)
6260, 61ffvelrnd 6883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ (1...(♯‘𝐴)))
6362elfzelzd 13078 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℤ)
6463zred 12247 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℝ)
6518adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℕ0)
6665nn0red 12116 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℝ)
67 elfzle2 13081 . . . . . . . . . 10 ((𝐺𝑘) ∈ (1...(♯‘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
6862, 67syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
6964, 66, 68lensymd 10948 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (♯‘𝐴) < (𝐺𝑘))
704adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
7126adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
72 isorel 7113 . . . . . . . . . 10 ((𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) ∧ ((♯‘𝐴) ∈ (1...(♯‘𝐴)) ∧ (𝐺𝑘) ∈ (1...(♯‘𝐴)))) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
7370, 71, 62, 72syl12anc 837 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
74 f1ocnvfv2 7066 . . . . . . . . . . 11 ((𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝑘𝐴) → (𝐺‘(𝐺𝑘)) = 𝑘)
7556, 61, 74syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺‘(𝐺𝑘)) = 𝑘)
7675breq2d 5051 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘)) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
7773, 76bitrd 282 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
7869, 77mtbid 327 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (𝐺‘(♯‘𝐴)) < 𝑘)
7978expr 460 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝑘𝐴 → ¬ (𝐺‘(♯‘𝐴)) < 𝑘))
8055, 79mt2d 138 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ¬ 𝑘𝐴)
8143, 80eldifd 3864 . . . 4 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
82 seqcoll2.7 . . . 4 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
8381, 82syldan 594 . . 3 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐹𝑘) = 𝑍)
841, 29, 31, 38, 83seqid2 13587 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq𝑀( + , 𝐹)‘𝑁))
85 seqcoll2.1 . . 3 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
86 seqcoll2.a . . 3 (𝜑𝑍𝑆)
873, 2sstrdi 3899 . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
8833ssdifd 4041 . . . . 5 (𝜑 → ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴) ⊆ ((𝑀...𝑁) ∖ 𝐴))
8988sselda 3887 . . . 4 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
9089, 82syldan 594 . . 3 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
91 seqcoll2.8 . . 3 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
9285, 1, 37, 86, 4, 26, 87, 36, 90, 91seqcoll 13995 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq1( + , 𝐻)‘(♯‘𝐴)))
9384, 92eqtr3d 2773 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2932  cdif 3850  wss 3853  c0 4223   class class class wbr 5039  ccnv 5535  wf 6354  1-1-ontowf1o 6357  cfv 6358   Isom wiso 6359  (class class class)co 7191  Fincfn 8604  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   < clt 10832  cle 10833  cn 11795  0cn0 12055  cuz 12403  ...cfz 13060  seqcseq 13539  chash 13861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-seq 13540  df-hash 13862
This theorem is referenced by:  isercolllem3  15195  gsumval3  19246
  Copyright terms: Public domain W3C validator