MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcoll2 Structured version   Visualization version   GIF version

Theorem seqcoll2 14514
Description: The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
seqcoll2.1 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
seqcoll2.1b ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
seqcoll2.c ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
seqcoll2.a (𝜑𝑍𝑆)
seqcoll2.2 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
seqcoll2.3 (𝜑𝐴 ≠ ∅)
seqcoll2.5 (𝜑𝐴 ⊆ (𝑀...𝑁))
seqcoll2.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcoll2.7 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
seqcoll2.8 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
Assertion
Ref Expression
seqcoll2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑛,𝐻   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑘,𝑁   + ,𝑘,𝑛   𝑆,𝑘,𝑛   𝑘,𝑍
Allowed substitution hints:   𝐻(𝑘)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem seqcoll2
StepHypRef Expression
1 seqcoll2.1b . . 3 ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
2 fzssuz 13625 . . . 4 (𝑀...𝑁) ⊆ (ℤ𝑀)
3 seqcoll2.5 . . . . 5 (𝜑𝐴 ⊆ (𝑀...𝑁))
4 seqcoll2.2 . . . . . . . 8 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
5 isof1o 7359 . . . . . . . 8 (𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
64, 5syl 17 . . . . . . 7 (𝜑𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
7 f1of 6862 . . . . . . 7 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:(1...(♯‘𝐴))⟶𝐴)
86, 7syl 17 . . . . . 6 (𝜑𝐺:(1...(♯‘𝐴))⟶𝐴)
9 seqcoll2.3 . . . . . . . . . 10 (𝜑𝐴 ≠ ∅)
10 fzfi 14023 . . . . . . . . . . . . 13 (𝑀...𝑁) ∈ Fin
11 ssfi 9240 . . . . . . . . . . . . 13 (((𝑀...𝑁) ∈ Fin ∧ 𝐴 ⊆ (𝑀...𝑁)) → 𝐴 ∈ Fin)
1210, 3, 11sylancr 586 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
13 hasheq0 14412 . . . . . . . . . . . 12 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1412, 13syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1514necon3bbid 2984 . . . . . . . . . 10 (𝜑 → (¬ (♯‘𝐴) = 0 ↔ 𝐴 ≠ ∅))
169, 15mpbird 257 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐴) = 0)
17 hashcl 14405 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1812, 17syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
19 elnn0 12555 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2018, 19sylib 218 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2120ord 863 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0))
2216, 21mt3d 148 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ)
23 nnuz 12946 . . . . . . . 8 ℕ = (ℤ‘1)
2422, 23eleqtrdi 2854 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ (ℤ‘1))
25 eluzfz2 13592 . . . . . . 7 ((♯‘𝐴) ∈ (ℤ‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
2624, 25syl 17 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
278, 26ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴)
283, 27sseldd 4009 . . . 4 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁))
292, 28sselid 4006 . . 3 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀))
30 elfzuz3 13581 . . . 4 ((𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
3128, 30syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
32 fzss2 13624 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))) → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3433sselda 4008 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → 𝑘 ∈ (𝑀...𝑁))
35 seqcoll2.6 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
3634, 35syldan 590 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹𝑘) ∈ 𝑆)
37 seqcoll2.c . . . 4 ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
3829, 36, 37seqcl 14073 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) ∈ 𝑆)
39 peano2uz 12966 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
4029, 39syl 17 . . . . . . 7 (𝜑 → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
41 fzss1 13623 . . . . . . 7 (((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀) → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4240, 41syl 17 . . . . . 6 (𝜑 → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4342sselda 4008 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
44 eluzelre 12914 . . . . . . . . 9 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4529, 44syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4645adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
47 peano2re 11463 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ ℝ → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
49 elfzelz 13584 . . . . . . . . 9 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℤ)
5049zred 12747 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℝ)
5150adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ℝ)
5246ltp1d 12225 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < ((𝐺‘(♯‘𝐴)) + 1))
53 elfzle1 13587 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5453adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5546, 48, 51, 52, 54ltletrd 11450 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < 𝑘)
566adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
57 f1ocnv 6874 . . . . . . . . . . . . . 14 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
59 f1of 6862 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto→(1...(♯‘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
6058, 59syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
61 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝑘𝐴)
6260, 61ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ (1...(♯‘𝐴)))
6362elfzelzd 13585 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℤ)
6463zred 12747 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℝ)
6518adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℕ0)
6665nn0red 12614 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℝ)
67 elfzle2 13588 . . . . . . . . . 10 ((𝐺𝑘) ∈ (1...(♯‘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
6862, 67syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
6964, 66, 68lensymd 11441 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (♯‘𝐴) < (𝐺𝑘))
704adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
7126adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
72 isorel 7362 . . . . . . . . . 10 ((𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) ∧ ((♯‘𝐴) ∈ (1...(♯‘𝐴)) ∧ (𝐺𝑘) ∈ (1...(♯‘𝐴)))) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
7370, 71, 62, 72syl12anc 836 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
74 f1ocnvfv2 7313 . . . . . . . . . . 11 ((𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝑘𝐴) → (𝐺‘(𝐺𝑘)) = 𝑘)
7556, 61, 74syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺‘(𝐺𝑘)) = 𝑘)
7675breq2d 5178 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘)) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
7773, 76bitrd 279 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
7869, 77mtbid 324 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (𝐺‘(♯‘𝐴)) < 𝑘)
7978expr 456 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝑘𝐴 → ¬ (𝐺‘(♯‘𝐴)) < 𝑘))
8055, 79mt2d 136 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ¬ 𝑘𝐴)
8143, 80eldifd 3987 . . . 4 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
82 seqcoll2.7 . . . 4 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
8381, 82syldan 590 . . 3 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐹𝑘) = 𝑍)
841, 29, 31, 38, 83seqid2 14099 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq𝑀( + , 𝐹)‘𝑁))
85 seqcoll2.1 . . 3 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
86 seqcoll2.a . . 3 (𝜑𝑍𝑆)
873, 2sstrdi 4021 . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
8833ssdifd 4168 . . . . 5 (𝜑 → ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴) ⊆ ((𝑀...𝑁) ∖ 𝐴))
8988sselda 4008 . . . 4 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
9089, 82syldan 590 . . 3 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
91 seqcoll2.8 . . 3 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
9285, 1, 37, 86, 4, 26, 87, 36, 90, 91seqcoll 14513 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq1( + , 𝐻)‘(♯‘𝐴)))
9384, 92eqtr3d 2782 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  c0 4352   class class class wbr 5166  ccnv 5699  wf 6569  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cn 12293  0cn0 12553  cuz 12903  ...cfz 13567  seqcseq 14052  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-hash 14380
This theorem is referenced by:  isercolllem3  15715  gsumval3  19949
  Copyright terms: Public domain W3C validator