MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcoll2 Structured version   Visualization version   GIF version

Theorem seqcoll2 14422
Description: The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
seqcoll2.1 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
seqcoll2.1b ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
seqcoll2.c ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
seqcoll2.a (𝜑𝑍𝑆)
seqcoll2.2 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
seqcoll2.3 (𝜑𝐴 ≠ ∅)
seqcoll2.5 (𝜑𝐴 ⊆ (𝑀...𝑁))
seqcoll2.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcoll2.7 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
seqcoll2.8 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
Assertion
Ref Expression
seqcoll2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑛,𝐻   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑘,𝑁   + ,𝑘,𝑛   𝑆,𝑘,𝑛   𝑘,𝑍
Allowed substitution hints:   𝐻(𝑘)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem seqcoll2
StepHypRef Expression
1 seqcoll2.1b . . 3 ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
2 fzssuz 13538 . . . 4 (𝑀...𝑁) ⊆ (ℤ𝑀)
3 seqcoll2.5 . . . . 5 (𝜑𝐴 ⊆ (𝑀...𝑁))
4 seqcoll2.2 . . . . . . . 8 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
5 isof1o 7316 . . . . . . . 8 (𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
64, 5syl 17 . . . . . . 7 (𝜑𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
7 f1of 6830 . . . . . . 7 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:(1...(♯‘𝐴))⟶𝐴)
86, 7syl 17 . . . . . 6 (𝜑𝐺:(1...(♯‘𝐴))⟶𝐴)
9 seqcoll2.3 . . . . . . . . . 10 (𝜑𝐴 ≠ ∅)
10 fzfi 13933 . . . . . . . . . . . . 13 (𝑀...𝑁) ∈ Fin
11 ssfi 9169 . . . . . . . . . . . . 13 (((𝑀...𝑁) ∈ Fin ∧ 𝐴 ⊆ (𝑀...𝑁)) → 𝐴 ∈ Fin)
1210, 3, 11sylancr 587 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
13 hasheq0 14319 . . . . . . . . . . . 12 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1412, 13syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1514necon3bbid 2978 . . . . . . . . . 10 (𝜑 → (¬ (♯‘𝐴) = 0 ↔ 𝐴 ≠ ∅))
169, 15mpbird 256 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐴) = 0)
17 hashcl 14312 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1812, 17syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
19 elnn0 12470 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2018, 19sylib 217 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2120ord 862 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0))
2216, 21mt3d 148 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ)
23 nnuz 12861 . . . . . . . 8 ℕ = (ℤ‘1)
2422, 23eleqtrdi 2843 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ (ℤ‘1))
25 eluzfz2 13505 . . . . . . 7 ((♯‘𝐴) ∈ (ℤ‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
2624, 25syl 17 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
278, 26ffvelcdmd 7084 . . . . 5 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴)
283, 27sseldd 3982 . . . 4 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁))
292, 28sselid 3979 . . 3 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀))
30 elfzuz3 13494 . . . 4 ((𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
3128, 30syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
32 fzss2 13537 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))) → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3433sselda 3981 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → 𝑘 ∈ (𝑀...𝑁))
35 seqcoll2.6 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
3634, 35syldan 591 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹𝑘) ∈ 𝑆)
37 seqcoll2.c . . . 4 ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
3829, 36, 37seqcl 13984 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) ∈ 𝑆)
39 peano2uz 12881 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
4029, 39syl 17 . . . . . . 7 (𝜑 → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
41 fzss1 13536 . . . . . . 7 (((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀) → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4240, 41syl 17 . . . . . 6 (𝜑 → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4342sselda 3981 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
44 eluzelre 12829 . . . . . . . . 9 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4529, 44syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4645adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
47 peano2re 11383 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ ℝ → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
49 elfzelz 13497 . . . . . . . . 9 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℤ)
5049zred 12662 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℝ)
5150adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ℝ)
5246ltp1d 12140 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < ((𝐺‘(♯‘𝐴)) + 1))
53 elfzle1 13500 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5453adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5546, 48, 51, 52, 54ltletrd 11370 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < 𝑘)
566adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
57 f1ocnv 6842 . . . . . . . . . . . . . 14 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
59 f1of 6830 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto→(1...(♯‘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
6058, 59syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
61 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝑘𝐴)
6260, 61ffvelcdmd 7084 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ (1...(♯‘𝐴)))
6362elfzelzd 13498 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℤ)
6463zred 12662 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℝ)
6518adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℕ0)
6665nn0red 12529 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℝ)
67 elfzle2 13501 . . . . . . . . . 10 ((𝐺𝑘) ∈ (1...(♯‘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
6862, 67syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
6964, 66, 68lensymd 11361 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (♯‘𝐴) < (𝐺𝑘))
704adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
7126adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
72 isorel 7319 . . . . . . . . . 10 ((𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) ∧ ((♯‘𝐴) ∈ (1...(♯‘𝐴)) ∧ (𝐺𝑘) ∈ (1...(♯‘𝐴)))) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
7370, 71, 62, 72syl12anc 835 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
74 f1ocnvfv2 7271 . . . . . . . . . . 11 ((𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝑘𝐴) → (𝐺‘(𝐺𝑘)) = 𝑘)
7556, 61, 74syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺‘(𝐺𝑘)) = 𝑘)
7675breq2d 5159 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘)) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
7773, 76bitrd 278 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
7869, 77mtbid 323 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (𝐺‘(♯‘𝐴)) < 𝑘)
7978expr 457 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝑘𝐴 → ¬ (𝐺‘(♯‘𝐴)) < 𝑘))
8055, 79mt2d 136 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ¬ 𝑘𝐴)
8143, 80eldifd 3958 . . . 4 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
82 seqcoll2.7 . . . 4 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
8381, 82syldan 591 . . 3 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐹𝑘) = 𝑍)
841, 29, 31, 38, 83seqid2 14010 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq𝑀( + , 𝐹)‘𝑁))
85 seqcoll2.1 . . 3 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
86 seqcoll2.a . . 3 (𝜑𝑍𝑆)
873, 2sstrdi 3993 . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
8833ssdifd 4139 . . . . 5 (𝜑 → ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴) ⊆ ((𝑀...𝑁) ∖ 𝐴))
8988sselda 3981 . . . 4 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
9089, 82syldan 591 . . 3 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
91 seqcoll2.8 . . 3 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
9285, 1, 37, 86, 4, 26, 87, 36, 90, 91seqcoll 14421 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq1( + , 𝐻)‘(♯‘𝐴)))
9384, 92eqtr3d 2774 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  cdif 3944  wss 3947  c0 4321   class class class wbr 5147  ccnv 5674  wf 6536  1-1-ontowf1o 6539  cfv 6540   Isom wiso 6541  (class class class)co 7405  Fincfn 8935  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cn 12208  0cn0 12468  cuz 12818  ...cfz 13480  seqcseq 13962  chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-hash 14287
This theorem is referenced by:  isercolllem3  15609  gsumval3  19769
  Copyright terms: Public domain W3C validator