MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem1 Structured version   Visualization version   GIF version

Theorem perfectlem1 25523
Description: Lemma for perfect 25525. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1 (𝜑𝐴 ∈ ℕ)
perfectlem.2 (𝜑𝐵 ∈ ℕ)
perfectlem.3 (𝜑 → ¬ 2 ∥ 𝐵)
perfectlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectlem1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 11512 . . 3 2 ∈ ℕ
2 perfectlem.1 . . . . 5 (𝜑𝐴 ∈ ℕ)
32nnnn0d 11766 . . . 4 (𝜑𝐴 ∈ ℕ0)
4 peano2nn0 11748 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝜑 → (𝐴 + 1) ∈ ℕ0)
6 nnexpcl 13256 . . 3 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
71, 5, 6sylancr 579 . 2 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
8 2re 11513 . . . 4 2 ∈ ℝ
92peano2nnd 11457 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℕ)
10 1lt2 11617 . . . . 5 1 < 2
1110a1i 11 . . . 4 (𝜑 → 1 < 2)
12 expgt1 13281 . . . 4 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
138, 9, 11, 12mp3an2i 1446 . . 3 (𝜑 → 1 < (2↑(𝐴 + 1)))
14 1nn 11451 . . . 4 1 ∈ ℕ
15 nnsub 11483 . . . 4 ((1 ∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1614, 7, 15sylancr 579 . . 3 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1713, 16mpbid 224 . 2 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
187nnzd 11898 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ)
19 peano2zm 11837 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
2018, 19syl 17 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
21 1nn0 11724 . . . . . . . 8 1 ∈ ℕ0
22 perfectlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
23 sgmnncl 25442 . . . . . . . 8 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
2421, 22, 23sylancr 579 . . . . . . 7 (𝜑 → (1 σ 𝐵) ∈ ℕ)
2524nnzd 11898 . . . . . 6 (𝜑 → (1 σ 𝐵) ∈ ℤ)
26 dvdsmul1 15490 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
2720, 25, 26syl2anc 576 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
28 2cn 11514 . . . . . . . . 9 2 ∈ ℂ
29 expp1 13250 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
3028, 3, 29sylancr 579 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
31 nnexpcl 13256 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
321, 3, 31sylancr 579 . . . . . . . . . 10 (𝜑 → (2↑𝐴) ∈ ℕ)
3332nncnd 11456 . . . . . . . . 9 (𝜑 → (2↑𝐴) ∈ ℂ)
34 mulcom 10420 . . . . . . . . 9 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3533, 28, 34sylancl 578 . . . . . . . 8 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3630, 35eqtrd 2809 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
3736oveq1d 6990 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
3828a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
3922nncnd 11456 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4038, 33, 39mulassd 10462 . . . . . 6 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
41 ax-1cn 10392 . . . . . . . . 9 1 ∈ ℂ
4241a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
43 perfectlem.3 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝐵)
44 2prm 15891 . . . . . . . . . . 11 2 ∈ ℙ
4522nnzd 11898 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
46 coprm 15910 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4744, 45, 46sylancr 579 . . . . . . . . . 10 (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4843, 47mpbid 224 . . . . . . . . 9 (𝜑 → (2 gcd 𝐵) = 1)
49 2z 11826 . . . . . . . . . 10 2 ∈ ℤ
50 rpexp1i 15920 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5149, 45, 3, 50mp3an2i 1446 . . . . . . . . 9 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5248, 51mpd 15 . . . . . . . 8 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
53 sgmmul 25495 . . . . . . . 8 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
5442, 32, 22, 52, 53syl13anc 1353 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
55 perfectlem.4 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
562nncnd 11456 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
57 pncan 10691 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5856, 41, 57sylancl 578 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
5958oveq2d 6991 . . . . . . . . . 10 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
6059oveq2d 6991 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
61 1sgm2ppw 25494 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
629, 61syl 17 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6360, 62eqtr3d 2811 . . . . . . . 8 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
6463oveq1d 6990 . . . . . . 7 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6554, 55, 643eqtr3d 2817 . . . . . 6 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6637, 40, 653eqtrd 2813 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6727, 66breqtrrd 4954 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵))
68 gcdcom 15721 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ) → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
6920, 18, 68syl2anc 576 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
70 iddvdsexp 15492 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ) → 2 ∥ (2↑(𝐴 + 1)))
7149, 9, 70sylancr 579 . . . . . . . 8 (𝜑 → 2 ∥ (2↑(𝐴 + 1)))
72 n2dvds1 15576 . . . . . . . . . 10 ¬ 2 ∥ 1
7349a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
74 1zzd 11825 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
7573, 18, 743jca 1109 . . . . . . . . . . 11 (𝜑 → (2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ))
76 dvdssub2 15510 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7775, 76sylan 572 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7872, 77mtbiri 319 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → ¬ 2 ∥ (2↑(𝐴 + 1)))
7978ex 405 . . . . . . . 8 (𝜑 → (2 ∥ ((2↑(𝐴 + 1)) − 1) → ¬ 2 ∥ (2↑(𝐴 + 1))))
8071, 79mt2d 134 . . . . . . 7 (𝜑 → ¬ 2 ∥ ((2↑(𝐴 + 1)) − 1))
81 coprm 15910 . . . . . . . 8 ((2 ∈ ℙ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ) → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8244, 20, 81sylancr 579 . . . . . . 7 (𝜑 → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8380, 82mpbid 224 . . . . . 6 (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
84 rpexp1i 15920 . . . . . . 7 ((2 ∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8549, 20, 5, 84mp3an2i 1446 . . . . . 6 (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8683, 85mpd 15 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1)
8769, 86eqtrd 2809 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1)
88 coprmdvds 15852 . . . . 5 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8920, 18, 45, 88syl3anc 1352 . . . 4 (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
9067, 87, 89mp2and 687 . . 3 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵)
91 nndivdvds 15475 . . . 4 ((𝐵 ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9222, 17, 91syl2anc 576 . . 3 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9390, 92mpbid 224 . 2 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
947, 17, 933jca 1109 1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051   class class class wbr 4926  (class class class)co 6975  cc 10332  cr 10333  1c1 10335   + caddc 10337   · cmul 10339   < clt 10473  cmin 10669   / cdiv 11097  cn 11438  2c2 11494  0cn0 11706  cz 11792  cexp 13243  cdvds 15466   gcd cgcd 15702  cprime 15870   σ csgm 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412  ax-addf 10413  ax-mulf 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-iin 4792  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-supp 7633  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-er 8088  df-map 8207  df-pm 8208  df-ixp 8259  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-fsupp 8628  df-fi 8669  df-sup 8700  df-inf 8701  df-oi 8768  df-card 9161  df-cda 9387  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-5 11505  df-6 11506  df-7 11507  df-8 11508  df-9 11509  df-n0 11707  df-z 11793  df-dec 11911  df-uz 12058  df-q 12162  df-rp 12204  df-xneg 12323  df-xadd 12324  df-xmul 12325  df-ioo 12557  df-ioc 12558  df-ico 12559  df-icc 12560  df-fz 12708  df-fzo 12849  df-fl 12976  df-mod 13052  df-seq 13184  df-exp 13244  df-fac 13448  df-bc 13477  df-hash 13505  df-shft 14286  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-limsup 14688  df-clim 14705  df-rlim 14706  df-sum 14903  df-ef 15280  df-sin 15282  df-cos 15283  df-pi 15285  df-dvds 15467  df-gcd 15703  df-prm 15871  df-pc 16029  df-struct 16340  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-mulr 16434  df-starv 16435  df-sca 16436  df-vsca 16437  df-ip 16438  df-tset 16439  df-ple 16440  df-ds 16442  df-unif 16443  df-hom 16444  df-cco 16445  df-rest 16551  df-topn 16552  df-0g 16570  df-gsum 16571  df-topgen 16572  df-pt 16573  df-prds 16576  df-xrs 16630  df-qtop 16635  df-imas 16636  df-xps 16638  df-mre 16728  df-mrc 16729  df-acs 16731  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-submnd 17817  df-mulg 18025  df-cntz 18231  df-cmn 18681  df-psmet 20255  df-xmet 20256  df-met 20257  df-bl 20258  df-mopn 20259  df-fbas 20260  df-fg 20261  df-cnfld 20264  df-top 21222  df-topon 21239  df-topsp 21261  df-bases 21274  df-cld 21347  df-ntr 21348  df-cls 21349  df-nei 21426  df-lp 21464  df-perf 21465  df-cn 21555  df-cnp 21556  df-haus 21643  df-tx 21890  df-hmeo 22083  df-fil 22174  df-fm 22266  df-flim 22267  df-flf 22268  df-xms 22649  df-ms 22650  df-tms 22651  df-cncf 23205  df-limc 24183  df-dv 24184  df-log 24857  df-cxp 24858  df-sgm 25397
This theorem is referenced by:  perfectlem2  25524
  Copyright terms: Public domain W3C validator