MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem1 Structured version   Visualization version   GIF version

Theorem perfectlem1 26593
Description: Lemma for perfect 26595. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„•)
perfectlem.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„•)
perfectlem.3 (๐œ‘ โ†’ ยฌ 2 โˆฅ ๐ต)
perfectlem.4 (๐œ‘ โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = (2 ยท ((2โ†‘๐ด) ยท ๐ต)))
Assertion
Ref Expression
perfectlem1 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆˆ โ„• โˆง ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„• โˆง (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„•))

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 12233 . . 3 2 โˆˆ โ„•
2 perfectlem.1 . . . . 5 (๐œ‘ โ†’ ๐ด โˆˆ โ„•)
32nnnn0d 12480 . . . 4 (๐œ‘ โ†’ ๐ด โˆˆ โ„•0)
4 peano2nn0 12460 . . . 4 (๐ด โˆˆ โ„•0 โ†’ (๐ด + 1) โˆˆ โ„•0)
53, 4syl 17 . . 3 (๐œ‘ โ†’ (๐ด + 1) โˆˆ โ„•0)
6 nnexpcl 13987 . . 3 ((2 โˆˆ โ„• โˆง (๐ด + 1) โˆˆ โ„•0) โ†’ (2โ†‘(๐ด + 1)) โˆˆ โ„•)
71, 5, 6sylancr 588 . 2 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) โˆˆ โ„•)
8 2re 12234 . . . 4 2 โˆˆ โ„
92peano2nnd 12177 . . . 4 (๐œ‘ โ†’ (๐ด + 1) โˆˆ โ„•)
10 1lt2 12331 . . . . 5 1 < 2
1110a1i 11 . . . 4 (๐œ‘ โ†’ 1 < 2)
12 expgt1 14013 . . . 4 ((2 โˆˆ โ„ โˆง (๐ด + 1) โˆˆ โ„• โˆง 1 < 2) โ†’ 1 < (2โ†‘(๐ด + 1)))
138, 9, 11, 12mp3an2i 1467 . . 3 (๐œ‘ โ†’ 1 < (2โ†‘(๐ด + 1)))
14 1nn 12171 . . . 4 1 โˆˆ โ„•
15 nnsub 12204 . . . 4 ((1 โˆˆ โ„• โˆง (2โ†‘(๐ด + 1)) โˆˆ โ„•) โ†’ (1 < (2โ†‘(๐ด + 1)) โ†” ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„•))
1614, 7, 15sylancr 588 . . 3 (๐œ‘ โ†’ (1 < (2โ†‘(๐ด + 1)) โ†” ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„•))
1713, 16mpbid 231 . 2 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„•)
187nnzd 12533 . . . . . . 7 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) โˆˆ โ„ค)
19 peano2zm 12553 . . . . . . 7 ((2โ†‘(๐ด + 1)) โˆˆ โ„ค โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค)
2018, 19syl 17 . . . . . 6 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค)
21 1nn0 12436 . . . . . . . 8 1 โˆˆ โ„•0
22 perfectlem.2 . . . . . . . 8 (๐œ‘ โ†’ ๐ต โˆˆ โ„•)
23 sgmnncl 26512 . . . . . . . 8 ((1 โˆˆ โ„•0 โˆง ๐ต โˆˆ โ„•) โ†’ (1 ฯƒ ๐ต) โˆˆ โ„•)
2421, 22, 23sylancr 588 . . . . . . 7 (๐œ‘ โ†’ (1 ฯƒ ๐ต) โˆˆ โ„•)
2524nnzd 12533 . . . . . 6 (๐œ‘ โ†’ (1 ฯƒ ๐ต) โˆˆ โ„ค)
26 dvdsmul1 16167 . . . . . 6 ((((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค โˆง (1 ฯƒ ๐ต) โˆˆ โ„ค) โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
2720, 25, 26syl2anc 585 . . . . 5 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
28 2cn 12235 . . . . . . . . 9 2 โˆˆ โ„‚
29 expp1 13981 . . . . . . . . 9 ((2 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„•0) โ†’ (2โ†‘(๐ด + 1)) = ((2โ†‘๐ด) ยท 2))
3028, 3, 29sylancr 588 . . . . . . . 8 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) = ((2โ†‘๐ด) ยท 2))
31 nnexpcl 13987 . . . . . . . . . . 11 ((2 โˆˆ โ„• โˆง ๐ด โˆˆ โ„•0) โ†’ (2โ†‘๐ด) โˆˆ โ„•)
321, 3, 31sylancr 588 . . . . . . . . . 10 (๐œ‘ โ†’ (2โ†‘๐ด) โˆˆ โ„•)
3332nncnd 12176 . . . . . . . . 9 (๐œ‘ โ†’ (2โ†‘๐ด) โˆˆ โ„‚)
34 mulcom 11144 . . . . . . . . 9 (((2โ†‘๐ด) โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚) โ†’ ((2โ†‘๐ด) ยท 2) = (2 ยท (2โ†‘๐ด)))
3533, 28, 34sylancl 587 . . . . . . . 8 (๐œ‘ โ†’ ((2โ†‘๐ด) ยท 2) = (2 ยท (2โ†‘๐ด)))
3630, 35eqtrd 2777 . . . . . . 7 (๐œ‘ โ†’ (2โ†‘(๐ด + 1)) = (2 ยท (2โ†‘๐ด)))
3736oveq1d 7377 . . . . . 6 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท ๐ต) = ((2 ยท (2โ†‘๐ด)) ยท ๐ต))
3828a1i 11 . . . . . . 7 (๐œ‘ โ†’ 2 โˆˆ โ„‚)
3922nncnd 12176 . . . . . . 7 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
4038, 33, 39mulassd 11185 . . . . . 6 (๐œ‘ โ†’ ((2 ยท (2โ†‘๐ด)) ยท ๐ต) = (2 ยท ((2โ†‘๐ด) ยท ๐ต)))
41 ax-1cn 11116 . . . . . . . . 9 1 โˆˆ โ„‚
4241a1i 11 . . . . . . . 8 (๐œ‘ โ†’ 1 โˆˆ โ„‚)
43 perfectlem.3 . . . . . . . . . 10 (๐œ‘ โ†’ ยฌ 2 โˆฅ ๐ต)
44 2prm 16575 . . . . . . . . . . 11 2 โˆˆ โ„™
4522nnzd 12533 . . . . . . . . . . 11 (๐œ‘ โ†’ ๐ต โˆˆ โ„ค)
46 coprm 16594 . . . . . . . . . . 11 ((2 โˆˆ โ„™ โˆง ๐ต โˆˆ โ„ค) โ†’ (ยฌ 2 โˆฅ ๐ต โ†” (2 gcd ๐ต) = 1))
4744, 45, 46sylancr 588 . . . . . . . . . 10 (๐œ‘ โ†’ (ยฌ 2 โˆฅ ๐ต โ†” (2 gcd ๐ต) = 1))
4843, 47mpbid 231 . . . . . . . . 9 (๐œ‘ โ†’ (2 gcd ๐ต) = 1)
49 2z 12542 . . . . . . . . . 10 2 โˆˆ โ„ค
50 rpexp1i 16606 . . . . . . . . . 10 ((2 โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ด โˆˆ โ„•0) โ†’ ((2 gcd ๐ต) = 1 โ†’ ((2โ†‘๐ด) gcd ๐ต) = 1))
5149, 45, 3, 50mp3an2i 1467 . . . . . . . . 9 (๐œ‘ โ†’ ((2 gcd ๐ต) = 1 โ†’ ((2โ†‘๐ด) gcd ๐ต) = 1))
5248, 51mpd 15 . . . . . . . 8 (๐œ‘ โ†’ ((2โ†‘๐ด) gcd ๐ต) = 1)
53 sgmmul 26565 . . . . . . . 8 ((1 โˆˆ โ„‚ โˆง ((2โ†‘๐ด) โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ((2โ†‘๐ด) gcd ๐ต) = 1)) โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = ((1 ฯƒ (2โ†‘๐ด)) ยท (1 ฯƒ ๐ต)))
5442, 32, 22, 52, 53syl13anc 1373 . . . . . . 7 (๐œ‘ โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = ((1 ฯƒ (2โ†‘๐ด)) ยท (1 ฯƒ ๐ต)))
55 perfectlem.4 . . . . . . 7 (๐œ‘ โ†’ (1 ฯƒ ((2โ†‘๐ด) ยท ๐ต)) = (2 ยท ((2โ†‘๐ด) ยท ๐ต)))
562nncnd 12176 . . . . . . . . . . . 12 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
57 pncan 11414 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚) โ†’ ((๐ด + 1) โˆ’ 1) = ๐ด)
5856, 41, 57sylancl 587 . . . . . . . . . . 11 (๐œ‘ โ†’ ((๐ด + 1) โˆ’ 1) = ๐ด)
5958oveq2d 7378 . . . . . . . . . 10 (๐œ‘ โ†’ (2โ†‘((๐ด + 1) โˆ’ 1)) = (2โ†‘๐ด))
6059oveq2d 7378 . . . . . . . . 9 (๐œ‘ โ†’ (1 ฯƒ (2โ†‘((๐ด + 1) โˆ’ 1))) = (1 ฯƒ (2โ†‘๐ด)))
61 1sgm2ppw 26564 . . . . . . . . . 10 ((๐ด + 1) โˆˆ โ„• โ†’ (1 ฯƒ (2โ†‘((๐ด + 1) โˆ’ 1))) = ((2โ†‘(๐ด + 1)) โˆ’ 1))
629, 61syl 17 . . . . . . . . 9 (๐œ‘ โ†’ (1 ฯƒ (2โ†‘((๐ด + 1) โˆ’ 1))) = ((2โ†‘(๐ด + 1)) โˆ’ 1))
6360, 62eqtr3d 2779 . . . . . . . 8 (๐œ‘ โ†’ (1 ฯƒ (2โ†‘๐ด)) = ((2โ†‘(๐ด + 1)) โˆ’ 1))
6463oveq1d 7377 . . . . . . 7 (๐œ‘ โ†’ ((1 ฯƒ (2โ†‘๐ด)) ยท (1 ฯƒ ๐ต)) = (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
6554, 55, 643eqtr3d 2785 . . . . . 6 (๐œ‘ โ†’ (2 ยท ((2โ†‘๐ด) ยท ๐ต)) = (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
6637, 40, 653eqtrd 2781 . . . . 5 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) ยท ๐ต) = (((2โ†‘(๐ด + 1)) โˆ’ 1) ยท (1 ฯƒ ๐ต)))
6727, 66breqtrrd 5138 . . . 4 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ((2โ†‘(๐ด + 1)) ยท ๐ต))
6820, 18gcdcomd 16401 . . . . 5 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) gcd (2โ†‘(๐ด + 1))) = ((2โ†‘(๐ด + 1)) gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)))
69 iddvdsexp 16169 . . . . . . . . 9 ((2 โˆˆ โ„ค โˆง (๐ด + 1) โˆˆ โ„•) โ†’ 2 โˆฅ (2โ†‘(๐ด + 1)))
7049, 9, 69sylancr 588 . . . . . . . 8 (๐œ‘ โ†’ 2 โˆฅ (2โ†‘(๐ด + 1)))
71 n2dvds1 16257 . . . . . . . . . 10 ยฌ 2 โˆฅ 1
7249a1i 11 . . . . . . . . . . . 12 (๐œ‘ โ†’ 2 โˆˆ โ„ค)
73 1zzd 12541 . . . . . . . . . . . 12 (๐œ‘ โ†’ 1 โˆˆ โ„ค)
7472, 18, 733jca 1129 . . . . . . . . . . 11 (๐œ‘ โ†’ (2 โˆˆ โ„ค โˆง (2โ†‘(๐ด + 1)) โˆˆ โ„ค โˆง 1 โˆˆ โ„ค))
75 dvdssub2 16190 . . . . . . . . . . 11 (((2 โˆˆ โ„ค โˆง (2โ†‘(๐ด + 1)) โˆˆ โ„ค โˆง 1 โˆˆ โ„ค) โˆง 2 โˆฅ ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ (2 โˆฅ (2โ†‘(๐ด + 1)) โ†” 2 โˆฅ 1))
7674, 75sylan 581 . . . . . . . . . 10 ((๐œ‘ โˆง 2 โˆฅ ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ (2 โˆฅ (2โ†‘(๐ด + 1)) โ†” 2 โˆฅ 1))
7771, 76mtbiri 327 . . . . . . . . 9 ((๐œ‘ โˆง 2 โˆฅ ((2โ†‘(๐ด + 1)) โˆ’ 1)) โ†’ ยฌ 2 โˆฅ (2โ†‘(๐ด + 1)))
7877ex 414 . . . . . . . 8 (๐œ‘ โ†’ (2 โˆฅ ((2โ†‘(๐ด + 1)) โˆ’ 1) โ†’ ยฌ 2 โˆฅ (2โ†‘(๐ด + 1))))
7970, 78mt2d 136 . . . . . . 7 (๐œ‘ โ†’ ยฌ 2 โˆฅ ((2โ†‘(๐ด + 1)) โˆ’ 1))
80 coprm 16594 . . . . . . . 8 ((2 โˆˆ โ„™ โˆง ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค) โ†’ (ยฌ 2 โˆฅ ((2โ†‘(๐ด + 1)) โˆ’ 1) โ†” (2 gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1))
8144, 20, 80sylancr 588 . . . . . . 7 (๐œ‘ โ†’ (ยฌ 2 โˆฅ ((2โ†‘(๐ด + 1)) โˆ’ 1) โ†” (2 gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1))
8279, 81mpbid 231 . . . . . 6 (๐œ‘ โ†’ (2 gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1)
83 rpexp1i 16606 . . . . . . 7 ((2 โˆˆ โ„ค โˆง ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค โˆง (๐ด + 1) โˆˆ โ„•0) โ†’ ((2 gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1 โ†’ ((2โ†‘(๐ด + 1)) gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1))
8449, 20, 5, 83mp3an2i 1467 . . . . . 6 (๐œ‘ โ†’ ((2 gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1 โ†’ ((2โ†‘(๐ด + 1)) gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1))
8582, 84mpd 15 . . . . 5 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) gcd ((2โ†‘(๐ด + 1)) โˆ’ 1)) = 1)
8668, 85eqtrd 2777 . . . 4 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) gcd (2โ†‘(๐ด + 1))) = 1)
87 coprmdvds 16536 . . . . 5 ((((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„ค โˆง (2โ†‘(๐ด + 1)) โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ((((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ((2โ†‘(๐ด + 1)) ยท ๐ต) โˆง (((2โ†‘(๐ด + 1)) โˆ’ 1) gcd (2โ†‘(๐ด + 1))) = 1) โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ๐ต))
8820, 18, 45, 87syl3anc 1372 . . . 4 (๐œ‘ โ†’ ((((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ((2โ†‘(๐ด + 1)) ยท ๐ต) โˆง (((2โ†‘(๐ด + 1)) โˆ’ 1) gcd (2โ†‘(๐ด + 1))) = 1) โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ๐ต))
8967, 86, 88mp2and 698 . . 3 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ๐ต)
90 nndivdvds 16152 . . . 4 ((๐ต โˆˆ โ„• โˆง ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„•) โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ๐ต โ†” (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„•))
9122, 17, 90syl2anc 585 . . 3 (๐œ‘ โ†’ (((2โ†‘(๐ด + 1)) โˆ’ 1) โˆฅ ๐ต โ†” (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„•))
9289, 91mpbid 231 . 2 (๐œ‘ โ†’ (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„•)
937, 17, 923jca 1129 1 (๐œ‘ โ†’ ((2โ†‘(๐ด + 1)) โˆˆ โ„• โˆง ((2โ†‘(๐ด + 1)) โˆ’ 1) โˆˆ โ„• โˆง (๐ต / ((2โ†‘(๐ด + 1)) โˆ’ 1)) โˆˆ โ„•))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 397   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107   class class class wbr 5110  (class class class)co 7362  โ„‚cc 11056  โ„cr 11057  1c1 11059   + caddc 11061   ยท cmul 11063   < clt 11196   โˆ’ cmin 11392   / cdiv 11819  โ„•cn 12160  2c2 12215  โ„•0cn0 12420  โ„คcz 12506  โ†‘cexp 13974   โˆฅ cdvds 16143   gcd cgcd 16381  โ„™cprime 16554   ฯƒ csgm 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-sum 15578  df-ef 15957  df-sin 15959  df-cos 15960  df-pi 15962  df-dvds 16144  df-gcd 16382  df-prm 16555  df-pc 16716  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-rest 17311  df-topn 17312  df-0g 17330  df-gsum 17331  df-topgen 17332  df-pt 17333  df-prds 17336  df-xrs 17391  df-qtop 17396  df-imas 17397  df-xps 17399  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-submnd 18609  df-mulg 18880  df-cntz 19104  df-cmn 19571  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-log 25928  df-cxp 25929  df-sgm 26467
This theorem is referenced by:  perfectlem2  26594
  Copyright terms: Public domain W3C validator