MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem1 Structured version   Visualization version   GIF version

Theorem perfectlem1 26377
Description: Lemma for perfect 26379. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1 (𝜑𝐴 ∈ ℕ)
perfectlem.2 (𝜑𝐵 ∈ ℕ)
perfectlem.3 (𝜑 → ¬ 2 ∥ 𝐵)
perfectlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectlem1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 12046 . . 3 2 ∈ ℕ
2 perfectlem.1 . . . . 5 (𝜑𝐴 ∈ ℕ)
32nnnn0d 12293 . . . 4 (𝜑𝐴 ∈ ℕ0)
4 peano2nn0 12273 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝜑 → (𝐴 + 1) ∈ ℕ0)
6 nnexpcl 13795 . . 3 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
71, 5, 6sylancr 587 . 2 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
8 2re 12047 . . . 4 2 ∈ ℝ
92peano2nnd 11990 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℕ)
10 1lt2 12144 . . . . 5 1 < 2
1110a1i 11 . . . 4 (𝜑 → 1 < 2)
12 expgt1 13821 . . . 4 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
138, 9, 11, 12mp3an2i 1465 . . 3 (𝜑 → 1 < (2↑(𝐴 + 1)))
14 1nn 11984 . . . 4 1 ∈ ℕ
15 nnsub 12017 . . . 4 ((1 ∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1614, 7, 15sylancr 587 . . 3 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1713, 16mpbid 231 . 2 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
187nnzd 12425 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ)
19 peano2zm 12363 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
2018, 19syl 17 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
21 1nn0 12249 . . . . . . . 8 1 ∈ ℕ0
22 perfectlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
23 sgmnncl 26296 . . . . . . . 8 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
2421, 22, 23sylancr 587 . . . . . . 7 (𝜑 → (1 σ 𝐵) ∈ ℕ)
2524nnzd 12425 . . . . . 6 (𝜑 → (1 σ 𝐵) ∈ ℤ)
26 dvdsmul1 15987 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
2720, 25, 26syl2anc 584 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
28 2cn 12048 . . . . . . . . 9 2 ∈ ℂ
29 expp1 13789 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
3028, 3, 29sylancr 587 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
31 nnexpcl 13795 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
321, 3, 31sylancr 587 . . . . . . . . . 10 (𝜑 → (2↑𝐴) ∈ ℕ)
3332nncnd 11989 . . . . . . . . 9 (𝜑 → (2↑𝐴) ∈ ℂ)
34 mulcom 10957 . . . . . . . . 9 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3533, 28, 34sylancl 586 . . . . . . . 8 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3630, 35eqtrd 2778 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
3736oveq1d 7290 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
3828a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
3922nncnd 11989 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4038, 33, 39mulassd 10998 . . . . . 6 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
41 ax-1cn 10929 . . . . . . . . 9 1 ∈ ℂ
4241a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
43 perfectlem.3 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝐵)
44 2prm 16397 . . . . . . . . . . 11 2 ∈ ℙ
4522nnzd 12425 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
46 coprm 16416 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4744, 45, 46sylancr 587 . . . . . . . . . 10 (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4843, 47mpbid 231 . . . . . . . . 9 (𝜑 → (2 gcd 𝐵) = 1)
49 2z 12352 . . . . . . . . . 10 2 ∈ ℤ
50 rpexp1i 16428 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5149, 45, 3, 50mp3an2i 1465 . . . . . . . . 9 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5248, 51mpd 15 . . . . . . . 8 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
53 sgmmul 26349 . . . . . . . 8 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
5442, 32, 22, 52, 53syl13anc 1371 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
55 perfectlem.4 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
562nncnd 11989 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
57 pncan 11227 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5856, 41, 57sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
5958oveq2d 7291 . . . . . . . . . 10 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
6059oveq2d 7291 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
61 1sgm2ppw 26348 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
629, 61syl 17 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6360, 62eqtr3d 2780 . . . . . . . 8 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
6463oveq1d 7290 . . . . . . 7 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6554, 55, 643eqtr3d 2786 . . . . . 6 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6637, 40, 653eqtrd 2782 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6727, 66breqtrrd 5102 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵))
6820, 18gcdcomd 16221 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
69 iddvdsexp 15989 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ) → 2 ∥ (2↑(𝐴 + 1)))
7049, 9, 69sylancr 587 . . . . . . . 8 (𝜑 → 2 ∥ (2↑(𝐴 + 1)))
71 n2dvds1 16077 . . . . . . . . . 10 ¬ 2 ∥ 1
7249a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
73 1zzd 12351 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
7472, 18, 733jca 1127 . . . . . . . . . . 11 (𝜑 → (2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ))
75 dvdssub2 16010 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7674, 75sylan 580 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7771, 76mtbiri 327 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → ¬ 2 ∥ (2↑(𝐴 + 1)))
7877ex 413 . . . . . . . 8 (𝜑 → (2 ∥ ((2↑(𝐴 + 1)) − 1) → ¬ 2 ∥ (2↑(𝐴 + 1))))
7970, 78mt2d 136 . . . . . . 7 (𝜑 → ¬ 2 ∥ ((2↑(𝐴 + 1)) − 1))
80 coprm 16416 . . . . . . . 8 ((2 ∈ ℙ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ) → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8144, 20, 80sylancr 587 . . . . . . 7 (𝜑 → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8279, 81mpbid 231 . . . . . 6 (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
83 rpexp1i 16428 . . . . . . 7 ((2 ∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8449, 20, 5, 83mp3an2i 1465 . . . . . 6 (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8582, 84mpd 15 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1)
8668, 85eqtrd 2778 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1)
87 coprmdvds 16358 . . . . 5 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8820, 18, 45, 87syl3anc 1370 . . . 4 (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8967, 86, 88mp2and 696 . . 3 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵)
90 nndivdvds 15972 . . . 4 ((𝐵 ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9122, 17, 90syl2anc 584 . . 3 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9289, 91mpbid 231 . 2 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
937, 17, 923jca 1127 1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cexp 13782  cdvds 15963   gcd cgcd 16201  cprime 16376   σ csgm 26245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-sgm 26251
This theorem is referenced by:  perfectlem2  26378
  Copyright terms: Public domain W3C validator