Proof of Theorem perfectlem1
Step | Hyp | Ref
| Expression |
1 | | 2nn 11903 |
. . 3
⊢ 2 ∈
ℕ |
2 | | perfectlem.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℕ) |
3 | 2 | nnnn0d 12150 |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
4 | | peano2nn0 12130 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ (𝐴 + 1) ∈
ℕ0) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 + 1) ∈
ℕ0) |
6 | | nnexpcl 13648 |
. . 3
⊢ ((2
∈ ℕ ∧ (𝐴 +
1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ) |
7 | 1, 5, 6 | sylancr 590 |
. 2
⊢ (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ) |
8 | | 2re 11904 |
. . . 4
⊢ 2 ∈
ℝ |
9 | 2 | peano2nnd 11847 |
. . . 4
⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
10 | | 1lt2 12001 |
. . . . 5
⊢ 1 <
2 |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 < 2) |
12 | | expgt1 13673 |
. . . 4
⊢ ((2
∈ ℝ ∧ (𝐴 +
1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1))) |
13 | 8, 9, 11, 12 | mp3an2i 1468 |
. . 3
⊢ (𝜑 → 1 < (2↑(𝐴 + 1))) |
14 | | 1nn 11841 |
. . . 4
⊢ 1 ∈
ℕ |
15 | | nnsub 11874 |
. . . 4
⊢ ((1
∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 <
(2↑(𝐴 + 1)) ↔
((2↑(𝐴 + 1)) −
1) ∈ ℕ)) |
16 | 14, 7, 15 | sylancr 590 |
. . 3
⊢ (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈
ℕ)) |
17 | 13, 16 | mpbid 235 |
. 2
⊢ (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈
ℕ) |
18 | 7 | nnzd 12281 |
. . . . . . 7
⊢ (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ) |
19 | | peano2zm 12220 |
. . . . . . 7
⊢
((2↑(𝐴 + 1))
∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈
ℤ) |
20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈
ℤ) |
21 | | 1nn0 12106 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
22 | | perfectlem.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℕ) |
23 | | sgmnncl 26029 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (1 σ 𝐵) ∈
ℕ) |
24 | 21, 22, 23 | sylancr 590 |
. . . . . . 7
⊢ (𝜑 → (1 σ 𝐵) ∈
ℕ) |
25 | 24 | nnzd 12281 |
. . . . . 6
⊢ (𝜑 → (1 σ 𝐵) ∈
ℤ) |
26 | | dvdsmul1 15839 |
. . . . . 6
⊢
((((2↑(𝐴 + 1))
− 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥
(((2↑(𝐴 + 1)) −
1) · (1 σ 𝐵))) |
27 | 20, 25, 26 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥
(((2↑(𝐴 + 1)) −
1) · (1 σ 𝐵))) |
28 | | 2cn 11905 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
29 | | expp1 13642 |
. . . . . . . . 9
⊢ ((2
∈ ℂ ∧ 𝐴
∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2)) |
30 | 28, 3, 29 | sylancr 590 |
. . . . . . . 8
⊢ (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2)) |
31 | | nnexpcl 13648 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝐴
∈ ℕ0) → (2↑𝐴) ∈ ℕ) |
32 | 1, 3, 31 | sylancr 590 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑𝐴) ∈ ℕ) |
33 | 32 | nncnd 11846 |
. . . . . . . . 9
⊢ (𝜑 → (2↑𝐴) ∈ ℂ) |
34 | | mulcom 10815 |
. . . . . . . . 9
⊢
(((2↑𝐴) ∈
ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴))) |
35 | 33, 28, 34 | sylancl 589 |
. . . . . . . 8
⊢ (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴))) |
36 | 30, 35 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴))) |
37 | 36 | oveq1d 7228 |
. . . . . 6
⊢ (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵)) |
38 | 28 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
39 | 22 | nncnd 11846 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
40 | 38, 33, 39 | mulassd 10856 |
. . . . . 6
⊢ (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵))) |
41 | | ax-1cn 10787 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
42 | 41 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
43 | | perfectlem.3 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
44 | | 2prm 16249 |
. . . . . . . . . . 11
⊢ 2 ∈
ℙ |
45 | 22 | nnzd 12281 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℤ) |
46 | | coprm 16268 |
. . . . . . . . . . 11
⊢ ((2
∈ ℙ ∧ 𝐵
∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1)) |
47 | 44, 45, 46 | sylancr 590 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1)) |
48 | 43, 47 | mpbid 235 |
. . . . . . . . 9
⊢ (𝜑 → (2 gcd 𝐵) = 1) |
49 | | 2z 12209 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
50 | | rpexp1i 16280 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ 𝐵
∈ ℤ ∧ 𝐴
∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1)) |
51 | 49, 45, 3, 50 | mp3an2i 1468 |
. . . . . . . . 9
⊢ (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1)) |
52 | 48, 51 | mpd 15 |
. . . . . . . 8
⊢ (𝜑 → ((2↑𝐴) gcd 𝐵) = 1) |
53 | | sgmmul 26082 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵))) |
54 | 42, 32, 22, 52, 53 | syl13anc 1374 |
. . . . . . 7
⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵))) |
55 | | perfectlem.4 |
. . . . . . 7
⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) |
56 | 2 | nncnd 11846 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℂ) |
57 | | pncan 11084 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐴 + 1)
− 1) = 𝐴) |
58 | 56, 41, 57 | sylancl 589 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴 + 1) − 1) = 𝐴) |
59 | 58 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑((𝐴 + 1) − 1)) =
(2↑𝐴)) |
60 | 59 | oveq2d 7229 |
. . . . . . . . 9
⊢ (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ
(2↑𝐴))) |
61 | | 1sgm2ppw 26081 |
. . . . . . . . . 10
⊢ ((𝐴 + 1) ∈ ℕ → (1
σ (2↑((𝐴 + 1)
− 1))) = ((2↑(𝐴
+ 1)) − 1)) |
62 | 9, 61 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) =
((2↑(𝐴 + 1)) −
1)) |
63 | 60, 62 | eqtr3d 2779 |
. . . . . . . 8
⊢ (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1)) |
64 | 63 | oveq1d 7228 |
. . . . . . 7
⊢ (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1
σ 𝐵))) |
65 | 54, 55, 64 | 3eqtr3d 2785 |
. . . . . 6
⊢ (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵))) |
66 | 37, 40, 65 | 3eqtrd 2781 |
. . . . 5
⊢ (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵))) |
67 | 27, 66 | breqtrrd 5081 |
. . . 4
⊢ (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥
((2↑(𝐴 + 1)) ·
𝐵)) |
68 | 20, 18 | gcdcomd 16073 |
. . . . 5
⊢ (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd
(2↑(𝐴 + 1))) =
((2↑(𝐴 + 1)) gcd
((2↑(𝐴 + 1)) −
1))) |
69 | | iddvdsexp 15841 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ (𝐴 +
1) ∈ ℕ) → 2 ∥ (2↑(𝐴 + 1))) |
70 | 49, 9, 69 | sylancr 590 |
. . . . . . . 8
⊢ (𝜑 → 2 ∥ (2↑(𝐴 + 1))) |
71 | | n2dvds1 15929 |
. . . . . . . . . 10
⊢ ¬ 2
∥ 1 |
72 | 49 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℤ) |
73 | | 1zzd 12208 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℤ) |
74 | 72, 18, 73 | 3jca 1130 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ∈ ℤ ∧
(2↑(𝐴 + 1)) ∈
ℤ ∧ 1 ∈ ℤ)) |
75 | | dvdssub2 15862 |
. . . . . . . . . . 11
⊢ (((2
∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈
ℤ) ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥
(2↑(𝐴 + 1)) ↔ 2
∥ 1)) |
76 | 74, 75 | sylan 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2
∥ (2↑(𝐴 + 1))
↔ 2 ∥ 1)) |
77 | 71, 76 | mtbiri 330 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → ¬
2 ∥ (2↑(𝐴 +
1))) |
78 | 77 | ex 416 |
. . . . . . . 8
⊢ (𝜑 → (2 ∥ ((2↑(𝐴 + 1)) − 1) → ¬ 2
∥ (2↑(𝐴 +
1)))) |
79 | 70, 78 | mt2d 138 |
. . . . . . 7
⊢ (𝜑 → ¬ 2 ∥
((2↑(𝐴 + 1)) −
1)) |
80 | | coprm 16268 |
. . . . . . . 8
⊢ ((2
∈ ℙ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ) →
(¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd
((2↑(𝐴 + 1)) −
1)) = 1)) |
81 | 44, 20, 80 | sylancr 590 |
. . . . . . 7
⊢ (𝜑 → (¬ 2 ∥
((2↑(𝐴 + 1)) −
1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)) |
82 | 79, 81 | mpbid 235 |
. . . . . 6
⊢ (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) =
1) |
83 | | rpexp1i 16280 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧
(𝐴 + 1) ∈
ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 →
((2↑(𝐴 + 1)) gcd
((2↑(𝐴 + 1)) −
1)) = 1)) |
84 | 49, 20, 5, 83 | mp3an2i 1468 |
. . . . . 6
⊢ (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 →
((2↑(𝐴 + 1)) gcd
((2↑(𝐴 + 1)) −
1)) = 1)) |
85 | 82, 84 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) =
1) |
86 | 68, 85 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd
(2↑(𝐴 + 1))) =
1) |
87 | | coprmdvds 16210 |
. . . . 5
⊢
((((2↑(𝐴 + 1))
− 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) →
((((2↑(𝐴 + 1)) −
1) ∥ ((2↑(𝐴 +
1)) · 𝐵) ∧
(((2↑(𝐴 + 1)) −
1) gcd (2↑(𝐴 + 1))) =
1) → ((2↑(𝐴 + 1))
− 1) ∥ 𝐵)) |
88 | 20, 18, 45, 87 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥
((2↑(𝐴 + 1)) ·
𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd
(2↑(𝐴 + 1))) = 1)
→ ((2↑(𝐴 + 1))
− 1) ∥ 𝐵)) |
89 | 67, 86, 88 | mp2and 699 |
. . 3
⊢ (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵) |
90 | | nndivdvds 15824 |
. . . 4
⊢ ((𝐵 ∈ ℕ ∧
((2↑(𝐴 + 1)) −
1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈
ℕ)) |
91 | 22, 17, 90 | syl2anc 587 |
. . 3
⊢ (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈
ℕ)) |
92 | 89, 91 | mpbid 235 |
. 2
⊢ (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈
ℕ) |
93 | 7, 17, 92 | 3jca 1130 |
1
⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧
((2↑(𝐴 + 1)) −
1) ∈ ℕ ∧ (𝐵
/ ((2↑(𝐴 + 1)) −
1)) ∈ ℕ)) |