MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem1 Structured version   Visualization version   GIF version

Theorem perfectlem1 27173
Description: Lemma for perfect 27175. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1 (𝜑𝐴 ∈ ℕ)
perfectlem.2 (𝜑𝐵 ∈ ℕ)
perfectlem.3 (𝜑 → ¬ 2 ∥ 𝐵)
perfectlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectlem1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 12235 . . 3 2 ∈ ℕ
2 perfectlem.1 . . . . 5 (𝜑𝐴 ∈ ℕ)
32nnnn0d 12479 . . . 4 (𝜑𝐴 ∈ ℕ0)
4 peano2nn0 12458 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝜑 → (𝐴 + 1) ∈ ℕ0)
6 nnexpcl 14015 . . 3 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
71, 5, 6sylancr 587 . 2 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
8 2re 12236 . . . 4 2 ∈ ℝ
92peano2nnd 12179 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℕ)
10 1lt2 12328 . . . . 5 1 < 2
1110a1i 11 . . . 4 (𝜑 → 1 < 2)
12 expgt1 14041 . . . 4 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
138, 9, 11, 12mp3an2i 1468 . . 3 (𝜑 → 1 < (2↑(𝐴 + 1)))
14 1nn 12173 . . . 4 1 ∈ ℕ
15 nnsub 12206 . . . 4 ((1 ∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1614, 7, 15sylancr 587 . . 3 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1713, 16mpbid 232 . 2 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
187nnzd 12532 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ)
19 peano2zm 12552 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
2018, 19syl 17 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
21 1nn0 12434 . . . . . . . 8 1 ∈ ℕ0
22 perfectlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
23 sgmnncl 27090 . . . . . . . 8 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
2421, 22, 23sylancr 587 . . . . . . 7 (𝜑 → (1 σ 𝐵) ∈ ℕ)
2524nnzd 12532 . . . . . 6 (𝜑 → (1 σ 𝐵) ∈ ℤ)
26 dvdsmul1 16223 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
2720, 25, 26syl2anc 584 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
28 2cn 12237 . . . . . . . . 9 2 ∈ ℂ
29 expp1 14009 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
3028, 3, 29sylancr 587 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
31 nnexpcl 14015 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
321, 3, 31sylancr 587 . . . . . . . . . 10 (𝜑 → (2↑𝐴) ∈ ℕ)
3332nncnd 12178 . . . . . . . . 9 (𝜑 → (2↑𝐴) ∈ ℂ)
34 mulcom 11130 . . . . . . . . 9 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3533, 28, 34sylancl 586 . . . . . . . 8 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3630, 35eqtrd 2764 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
3736oveq1d 7384 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
3828a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
3922nncnd 12178 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4038, 33, 39mulassd 11173 . . . . . 6 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
41 ax-1cn 11102 . . . . . . . . 9 1 ∈ ℂ
4241a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
43 perfectlem.3 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝐵)
44 2prm 16638 . . . . . . . . . . 11 2 ∈ ℙ
4522nnzd 12532 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
46 coprm 16657 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4744, 45, 46sylancr 587 . . . . . . . . . 10 (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4843, 47mpbid 232 . . . . . . . . 9 (𝜑 → (2 gcd 𝐵) = 1)
49 2z 12541 . . . . . . . . . 10 2 ∈ ℤ
50 rpexp1i 16669 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5149, 45, 3, 50mp3an2i 1468 . . . . . . . . 9 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5248, 51mpd 15 . . . . . . . 8 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
53 sgmmul 27145 . . . . . . . 8 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
5442, 32, 22, 52, 53syl13anc 1374 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
55 perfectlem.4 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
562nncnd 12178 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
57 pncan 11403 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5856, 41, 57sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
5958oveq2d 7385 . . . . . . . . . 10 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
6059oveq2d 7385 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
61 1sgm2ppw 27144 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
629, 61syl 17 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6360, 62eqtr3d 2766 . . . . . . . 8 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
6463oveq1d 7384 . . . . . . 7 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6554, 55, 643eqtr3d 2772 . . . . . 6 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6637, 40, 653eqtrd 2768 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6727, 66breqtrrd 5130 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵))
6820, 18gcdcomd 16460 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
69 iddvdsexp 16225 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ) → 2 ∥ (2↑(𝐴 + 1)))
7049, 9, 69sylancr 587 . . . . . . . 8 (𝜑 → 2 ∥ (2↑(𝐴 + 1)))
71 n2dvds1 16314 . . . . . . . . . 10 ¬ 2 ∥ 1
7249a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
73 1zzd 12540 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
7472, 18, 733jca 1128 . . . . . . . . . . 11 (𝜑 → (2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ))
75 dvdssub2 16247 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7674, 75sylan 580 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7771, 76mtbiri 327 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → ¬ 2 ∥ (2↑(𝐴 + 1)))
7877ex 412 . . . . . . . 8 (𝜑 → (2 ∥ ((2↑(𝐴 + 1)) − 1) → ¬ 2 ∥ (2↑(𝐴 + 1))))
7970, 78mt2d 136 . . . . . . 7 (𝜑 → ¬ 2 ∥ ((2↑(𝐴 + 1)) − 1))
80 coprm 16657 . . . . . . . 8 ((2 ∈ ℙ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ) → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8144, 20, 80sylancr 587 . . . . . . 7 (𝜑 → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8279, 81mpbid 232 . . . . . 6 (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
83 rpexp1i 16669 . . . . . . 7 ((2 ∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8449, 20, 5, 83mp3an2i 1468 . . . . . 6 (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8582, 84mpd 15 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1)
8668, 85eqtrd 2764 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1)
87 coprmdvds 16599 . . . . 5 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8820, 18, 45, 87syl3anc 1373 . . . 4 (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8967, 86, 88mp2and 699 . . 3 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵)
90 nndivdvds 16207 . . . 4 ((𝐵 ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9122, 17, 90syl2anc 584 . . 3 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9289, 91mpbid 232 . 2 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
937, 17, 923jca 1128 1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cexp 14002  cdvds 16198   gcd cgcd 16440  cprime 16617   σ csgm 27039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-cxp 26499  df-sgm 27045
This theorem is referenced by:  perfectlem2  27174
  Copyright terms: Public domain W3C validator