| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mule1 | Structured version Visualization version GIF version | ||
| Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 27079, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| mule1 | ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muval 27070 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
| 2 | iftrue 4480 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) | |
| 3 | 1, 2 | sylan9eq 2788 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
| 4 | 3 | fveq2d 6832 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0)) |
| 5 | abs0 15194 | . . . 4 ⊢ (abs‘0) = 0 | |
| 6 | 0le1 11647 | . . . 4 ⊢ 0 ≤ 1 | |
| 7 | 5, 6 | eqbrtri 5114 | . . 3 ⊢ (abs‘0) ≤ 1 |
| 8 | 4, 7 | eqbrtrdi 5132 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
| 9 | iffalse 4483 | . . . . . 6 ⊢ (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
| 10 | 1, 9 | sylan9eq 2788 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| 11 | 10 | fveq2d 6832 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 12 | neg1cn 12117 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 13 | prmdvdsfi 27045 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
| 14 | hashcl 14265 | . . . . . . . 8 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) |
| 16 | absexp 15213 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
| 17 | 12, 15, 16 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| 18 | ax-1cn 11071 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 19 | 18 | absnegi 15310 | . . . . . . . . 9 ⊢ (abs‘-1) = (abs‘1) |
| 20 | abs1 15206 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
| 21 | 19, 20 | eqtri 2756 | . . . . . . . 8 ⊢ (abs‘-1) = 1 |
| 22 | 21 | oveq1i 7362 | . . . . . . 7 ⊢ ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
| 23 | 15 | nn0zd 12500 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ) |
| 24 | 1exp 14000 | . . . . . . . 8 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
| 26 | 22, 25 | eqtrid 2780 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
| 27 | 17, 26 | eqtrd 2768 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
| 29 | 11, 28 | eqtrd 2768 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1) |
| 30 | 1le1 11752 | . . 3 ⊢ 1 ≤ 1 | |
| 31 | 29, 30 | eqbrtrdi 5132 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
| 32 | 8, 31 | pm2.61dan 812 | 1 ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ifcif 4474 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 ℂcc 11011 0cc0 11013 1c1 11014 ≤ cle 11154 -cneg 11352 ℕcn 12132 2c2 12187 ℕ0cn0 12388 ℤcz 12475 ↑cexp 13970 ♯chash 14239 abscabs 15143 ∥ cdvds 16165 ℙcprime 16584 μcmu 27033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-prm 16585 df-mu 27039 |
| This theorem is referenced by: dchrmusum2 27433 dchrvmasumlem3 27438 mudivsum 27469 mulogsumlem 27470 mulog2sumlem2 27474 selberglem2 27485 |
| Copyright terms: Public domain | W3C validator |