![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mule1 | Structured version Visualization version GIF version |
Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 25280, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
mule1 | ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muval 25271 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
2 | iftrue 4312 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) | |
3 | 1, 2 | sylan9eq 2881 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
4 | 3 | fveq2d 6437 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0)) |
5 | abs0 14402 | . . . 4 ⊢ (abs‘0) = 0 | |
6 | 0le1 10875 | . . . 4 ⊢ 0 ≤ 1 | |
7 | 5, 6 | eqbrtri 4894 | . . 3 ⊢ (abs‘0) ≤ 1 |
8 | 4, 7 | syl6eqbr 4912 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
9 | iffalse 4315 | . . . . . 6 ⊢ (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
10 | 1, 9 | sylan9eq 2881 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
11 | 10 | fveq2d 6437 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
12 | neg1cn 11472 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
13 | prmdvdsfi 25246 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
14 | hashcl 13437 | . . . . . . . 8 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) |
16 | absexp 14421 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
17 | 12, 15, 16 | sylancr 583 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
18 | ax-1cn 10310 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
19 | 18 | absnegi 14516 | . . . . . . . . 9 ⊢ (abs‘-1) = (abs‘1) |
20 | abs1 14414 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
21 | 19, 20 | eqtri 2849 | . . . . . . . 8 ⊢ (abs‘-1) = 1 |
22 | 21 | oveq1i 6915 | . . . . . . 7 ⊢ ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
23 | 15 | nn0zd 11808 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ) |
24 | 1exp 13183 | . . . . . . . 8 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
26 | 22, 25 | syl5eq 2873 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
27 | 17, 26 | eqtrd 2861 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
28 | 27 | adantr 474 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
29 | 11, 28 | eqtrd 2861 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1) |
30 | 1le1 10980 | . . 3 ⊢ 1 ≤ 1 | |
31 | 29, 30 | syl6eqbr 4912 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
32 | 8, 31 | pm2.61dan 849 | 1 ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∃wrex 3118 {crab 3121 ifcif 4306 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 Fincfn 8222 ℂcc 10250 0cc0 10252 1c1 10253 ≤ cle 10392 -cneg 10586 ℕcn 11350 2c2 11406 ℕ0cn0 11618 ℤcz 11704 ↑cexp 13154 ♯chash 13410 abscabs 14351 ∥ cdvds 15357 ℙcprime 15757 μcmu 25234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-fz 12620 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-dvds 15358 df-prm 15758 df-mu 25240 |
This theorem is referenced by: dchrmusum2 25596 dchrvmasumlem3 25601 mudivsum 25632 mulogsumlem 25633 mulog2sumlem2 25637 selberglem2 25648 |
Copyright terms: Public domain | W3C validator |