MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mule1 Structured version   Visualization version   GIF version

Theorem mule1 27209
Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 27202, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
mule1 (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1)

Proof of Theorem mule1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 muval 27193 . . . . 5 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
2 iftrue 4554 . . . . 5 (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0)
31, 2sylan9eq 2800 . . . 4 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0)
43fveq2d 6924 . . 3 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0))
5 abs0 15334 . . . 4 (abs‘0) = 0
6 0le1 11813 . . . 4 0 ≤ 1
75, 6eqbrtri 5187 . . 3 (abs‘0) ≤ 1
84, 7eqbrtrdi 5205 . 2 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1)
9 iffalse 4557 . . . . . 6 (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
101, 9sylan9eq 2800 . . . . 5 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
1110fveq2d 6924 . . . 4 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
12 neg1cn 12407 . . . . . . 7 -1 ∈ ℂ
13 prmdvdsfi 27168 . . . . . . . 8 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
14 hashcl 14405 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
1513, 14syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
16 absexp 15353 . . . . . . 7 ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
1712, 15, 16sylancr 586 . . . . . 6 (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
18 ax-1cn 11242 . . . . . . . . . 10 1 ∈ ℂ
1918absnegi 15449 . . . . . . . . 9 (abs‘-1) = (abs‘1)
20 abs1 15346 . . . . . . . . 9 (abs‘1) = 1
2119, 20eqtri 2768 . . . . . . . 8 (abs‘-1) = 1
2221oveq1i 7458 . . . . . . 7 ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))
2315nn0zd 12665 . . . . . . . 8 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ)
24 1exp 14142 . . . . . . . 8 ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2622, 25eqtrid 2792 . . . . . 6 (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2717, 26eqtrd 2780 . . . . 5 (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 1)
2827adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 1)
2911, 28eqtrd 2780 . . 3 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1)
30 1le1 11918 . . 3 1 ≤ 1
3129, 30eqbrtrdi 5205 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1)
328, 31pm2.61dan 812 1 (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185  cle 11325  -cneg 11521  cn 12293  2c2 12348  0cn0 12553  cz 12639  cexp 14112  chash 14379  abscabs 15283  cdvds 16302  cprime 16718  μcmu 27156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-mu 27162
This theorem is referenced by:  dchrmusum2  27556  dchrvmasumlem3  27561  mudivsum  27592  mulogsumlem  27593  mulog2sumlem2  27597  selberglem2  27608
  Copyright terms: Public domain W3C validator