MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mule1 Structured version   Visualization version   GIF version

Theorem mule1 27205
Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 27198, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
mule1 (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1)

Proof of Theorem mule1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 muval 27189 . . . . 5 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
2 iftrue 4536 . . . . 5 (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0)
31, 2sylan9eq 2794 . . . 4 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0)
43fveq2d 6910 . . 3 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0))
5 abs0 15320 . . . 4 (abs‘0) = 0
6 0le1 11783 . . . 4 0 ≤ 1
75, 6eqbrtri 5168 . . 3 (abs‘0) ≤ 1
84, 7eqbrtrdi 5186 . 2 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1)
9 iffalse 4539 . . . . . 6 (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
101, 9sylan9eq 2794 . . . . 5 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
1110fveq2d 6910 . . . 4 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
12 neg1cn 12377 . . . . . . 7 -1 ∈ ℂ
13 prmdvdsfi 27164 . . . . . . . 8 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
14 hashcl 14391 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
1513, 14syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
16 absexp 15339 . . . . . . 7 ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
1712, 15, 16sylancr 587 . . . . . 6 (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
18 ax-1cn 11210 . . . . . . . . . 10 1 ∈ ℂ
1918absnegi 15435 . . . . . . . . 9 (abs‘-1) = (abs‘1)
20 abs1 15332 . . . . . . . . 9 (abs‘1) = 1
2119, 20eqtri 2762 . . . . . . . 8 (abs‘-1) = 1
2221oveq1i 7440 . . . . . . 7 ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))
2315nn0zd 12636 . . . . . . . 8 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ)
24 1exp 14128 . . . . . . . 8 ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2622, 25eqtrid 2786 . . . . . 6 (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2717, 26eqtrd 2774 . . . . 5 (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 1)
2827adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 1)
2911, 28eqtrd 2774 . . 3 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1)
30 1le1 11888 . . 3 1 ≤ 1
3129, 30eqbrtrdi 5186 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1)
328, 31pm2.61dan 813 1 (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wrex 3067  {crab 3432  ifcif 4530   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  0cc0 11152  1c1 11153  cle 11293  -cneg 11490  cn 12263  2c2 12318  0cn0 12523  cz 12610  cexp 14098  chash 14365  abscabs 15269  cdvds 16286  cprime 16704  μcmu 27152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-prm 16705  df-mu 27158
This theorem is referenced by:  dchrmusum2  27552  dchrvmasumlem3  27557  mudivsum  27588  mulogsumlem  27589  mulog2sumlem2  27593  selberglem2  27604
  Copyright terms: Public domain W3C validator