MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mule1 Structured version   Visualization version   GIF version

Theorem mule1 26061
Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 26054, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
mule1 (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1)

Proof of Theorem mule1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 muval 26045 . . . . 5 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
2 iftrue 4461 . . . . 5 (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0)
31, 2sylan9eq 2800 . . . 4 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0)
43fveq2d 6742 . . 3 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0))
5 abs0 14881 . . . 4 (abs‘0) = 0
6 0le1 11384 . . . 4 0 ≤ 1
75, 6eqbrtri 5090 . . 3 (abs‘0) ≤ 1
84, 7eqbrtrdi 5108 . 2 ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1)
9 iffalse 4464 . . . . . 6 (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
101, 9sylan9eq 2800 . . . . 5 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
1110fveq2d 6742 . . . 4 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
12 neg1cn 11973 . . . . . . 7 -1 ∈ ℂ
13 prmdvdsfi 26020 . . . . . . . 8 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
14 hashcl 13955 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
1513, 14syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
16 absexp 14900 . . . . . . 7 ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
1712, 15, 16sylancr 590 . . . . . 6 (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
18 ax-1cn 10816 . . . . . . . . . 10 1 ∈ ℂ
1918absnegi 14996 . . . . . . . . 9 (abs‘-1) = (abs‘1)
20 abs1 14893 . . . . . . . . 9 (abs‘1) = 1
2119, 20eqtri 2767 . . . . . . . 8 (abs‘-1) = 1
2221oveq1i 7244 . . . . . . 7 ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))
2315nn0zd 12309 . . . . . . . 8 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ)
24 1exp 13696 . . . . . . . 8 ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2622, 25syl5eq 2792 . . . . . 6 (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) = 1)
2717, 26eqtrd 2779 . . . . 5 (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 1)
2827adantr 484 . . . 4 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 1)
2911, 28eqtrd 2779 . . 3 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1)
30 1le1 11489 . . 3 1 ≤ 1
3129, 30eqbrtrdi 5108 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1)
328, 31pm2.61dan 813 1 (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3065  {crab 3068  ifcif 4455   class class class wbr 5069  cfv 6400  (class class class)co 7234  Fincfn 8649  cc 10756  0cc0 10758  1c1 10759  cle 10897  -cneg 11092  cn 11859  2c2 11914  0cn0 12119  cz 12205  cexp 13666  chash 13928  abscabs 14829  cdvds 15847  cprime 16260  μcmu 26008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835  ax-pre-sup 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-sup 9087  df-card 9584  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-div 11519  df-nn 11860  df-2 11922  df-3 11923  df-n0 12120  df-z 12206  df-uz 12468  df-rp 12616  df-fz 13125  df-seq 13606  df-exp 13667  df-hash 13929  df-cj 14694  df-re 14695  df-im 14696  df-sqrt 14830  df-abs 14831  df-dvds 15848  df-prm 16261  df-mu 26014
This theorem is referenced by:  dchrmusum2  26406  dchrvmasumlem3  26411  mudivsum  26442  mulogsumlem  26443  mulog2sumlem2  26447  selberglem2  26458
  Copyright terms: Public domain W3C validator