| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mule1 | Structured version Visualization version GIF version | ||
| Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 27051, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| mule1 | ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muval 27042 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
| 2 | iftrue 4494 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) | |
| 3 | 1, 2 | sylan9eq 2784 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
| 4 | 3 | fveq2d 6862 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0)) |
| 5 | abs0 15251 | . . . 4 ⊢ (abs‘0) = 0 | |
| 6 | 0le1 11701 | . . . 4 ⊢ 0 ≤ 1 | |
| 7 | 5, 6 | eqbrtri 5128 | . . 3 ⊢ (abs‘0) ≤ 1 |
| 8 | 4, 7 | eqbrtrdi 5146 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
| 9 | iffalse 4497 | . . . . . 6 ⊢ (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
| 10 | 1, 9 | sylan9eq 2784 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| 11 | 10 | fveq2d 6862 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 12 | neg1cn 12171 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 13 | prmdvdsfi 27017 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
| 14 | hashcl 14321 | . . . . . . . 8 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) |
| 16 | absexp 15270 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
| 17 | 12, 15, 16 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| 18 | ax-1cn 11126 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 19 | 18 | absnegi 15367 | . . . . . . . . 9 ⊢ (abs‘-1) = (abs‘1) |
| 20 | abs1 15263 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
| 21 | 19, 20 | eqtri 2752 | . . . . . . . 8 ⊢ (abs‘-1) = 1 |
| 22 | 21 | oveq1i 7397 | . . . . . . 7 ⊢ ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
| 23 | 15 | nn0zd 12555 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ) |
| 24 | 1exp 14056 | . . . . . . . 8 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
| 26 | 22, 25 | eqtrid 2776 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
| 27 | 17, 26 | eqtrd 2764 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
| 29 | 11, 28 | eqtrd 2764 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1) |
| 30 | 1le1 11806 | . . 3 ⊢ 1 ≤ 1 | |
| 31 | 29, 30 | eqbrtrdi 5146 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
| 32 | 8, 31 | pm2.61dan 812 | 1 ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 ifcif 4488 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 0cc0 11068 1c1 11069 ≤ cle 11209 -cneg 11406 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ℤcz 12529 ↑cexp 14026 ♯chash 14295 abscabs 15200 ∥ cdvds 16222 ℙcprime 16641 μcmu 27005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-prm 16642 df-mu 27011 |
| This theorem is referenced by: dchrmusum2 27405 dchrvmasumlem3 27410 mudivsum 27441 mulogsumlem 27442 mulog2sumlem2 27446 selberglem2 27457 |
| Copyright terms: Public domain | W3C validator |