![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mule1 | Structured version Visualization version GIF version |
Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 27198, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
mule1 | ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muval 27189 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
2 | iftrue 4536 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) | |
3 | 1, 2 | sylan9eq 2794 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
4 | 3 | fveq2d 6910 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0)) |
5 | abs0 15320 | . . . 4 ⊢ (abs‘0) = 0 | |
6 | 0le1 11783 | . . . 4 ⊢ 0 ≤ 1 | |
7 | 5, 6 | eqbrtri 5168 | . . 3 ⊢ (abs‘0) ≤ 1 |
8 | 4, 7 | eqbrtrdi 5186 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
9 | iffalse 4539 | . . . . . 6 ⊢ (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
10 | 1, 9 | sylan9eq 2794 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
11 | 10 | fveq2d 6910 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
12 | neg1cn 12377 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
13 | prmdvdsfi 27164 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
14 | hashcl 14391 | . . . . . . . 8 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) |
16 | absexp 15339 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
17 | 12, 15, 16 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
18 | ax-1cn 11210 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
19 | 18 | absnegi 15435 | . . . . . . . . 9 ⊢ (abs‘-1) = (abs‘1) |
20 | abs1 15332 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
21 | 19, 20 | eqtri 2762 | . . . . . . . 8 ⊢ (abs‘-1) = 1 |
22 | 21 | oveq1i 7440 | . . . . . . 7 ⊢ ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
23 | 15 | nn0zd 12636 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ) |
24 | 1exp 14128 | . . . . . . . 8 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
26 | 22, 25 | eqtrid 2786 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
27 | 17, 26 | eqtrd 2774 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
28 | 27 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
29 | 11, 28 | eqtrd 2774 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1) |
30 | 1le1 11888 | . . 3 ⊢ 1 ≤ 1 | |
31 | 29, 30 | eqbrtrdi 5186 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
32 | 8, 31 | pm2.61dan 813 | 1 ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 {crab 3432 ifcif 4530 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 ℂcc 11150 0cc0 11152 1c1 11153 ≤ cle 11293 -cneg 11490 ℕcn 12263 2c2 12318 ℕ0cn0 12523 ℤcz 12610 ↑cexp 14098 ♯chash 14365 abscabs 15269 ∥ cdvds 16286 ℙcprime 16704 μcmu 27152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fz 13544 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-prm 16705 df-mu 27158 |
This theorem is referenced by: dchrmusum2 27552 dchrvmasumlem3 27557 mudivsum 27588 mulogsumlem 27589 mulog2sumlem2 27593 selberglem2 27604 |
Copyright terms: Public domain | W3C validator |