![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mule1 | Structured version Visualization version GIF version |
Description: The Möbius function takes on values in magnitude at most 1. (Together with mucl 27202, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
mule1 | ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muval 27193 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
2 | iftrue 4554 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) | |
3 | 1, 2 | sylan9eq 2800 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
4 | 3 | fveq2d 6924 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘0)) |
5 | abs0 15334 | . . . 4 ⊢ (abs‘0) = 0 | |
6 | 0le1 11813 | . . . 4 ⊢ 0 ≤ 1 | |
7 | 5, 6 | eqbrtri 5187 | . . 3 ⊢ (abs‘0) ≤ 1 |
8 | 4, 7 | eqbrtrdi 5205 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
9 | iffalse 4557 | . . . . . 6 ⊢ (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
10 | 1, 9 | sylan9eq 2800 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
11 | 10 | fveq2d 6924 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
12 | neg1cn 12407 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
13 | prmdvdsfi 27168 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
14 | hashcl 14405 | . . . . . . . 8 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) |
16 | absexp 15353 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℕ0) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
17 | 12, 15, 16 | sylancr 586 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
18 | ax-1cn 11242 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
19 | 18 | absnegi 15449 | . . . . . . . . 9 ⊢ (abs‘-1) = (abs‘1) |
20 | abs1 15346 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
21 | 19, 20 | eqtri 2768 | . . . . . . . 8 ⊢ (abs‘-1) = 1 |
22 | 21 | oveq1i 7458 | . . . . . . 7 ⊢ ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
23 | 15 | nn0zd 12665 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ) |
24 | 1exp 14142 | . . . . . . . 8 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℤ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
26 | 22, 25 | eqtrid 2792 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((abs‘-1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) = 1) |
27 | 17, 26 | eqtrd 2780 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
28 | 27 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 1) |
29 | 11, 28 | eqtrd 2780 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) = 1) |
30 | 1le1 11918 | . . 3 ⊢ 1 ≤ 1 | |
31 | 29, 30 | eqbrtrdi 5205 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) → (abs‘(μ‘𝐴)) ≤ 1) |
32 | 8, 31 | pm2.61dan 812 | 1 ⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ifcif 4548 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℂcc 11182 0cc0 11184 1c1 11185 ≤ cle 11325 -cneg 11521 ℕcn 12293 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ↑cexp 14112 ♯chash 14379 abscabs 15283 ∥ cdvds 16302 ℙcprime 16718 μcmu 27156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 df-mu 27162 |
This theorem is referenced by: dchrmusum2 27556 dchrvmasumlem3 27561 mudivsum 27592 mulogsumlem 27593 mulog2sumlem2 27597 selberglem2 27608 |
Copyright terms: Public domain | W3C validator |