Step | Hyp | Ref
| Expression |
1 | | muval 26873 |
. . . . 5
β’ (π΄ β β β
(ΞΌβπ΄) =
if(βπ β β
(πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄})))) |
2 | | iftrue 4534 |
. . . . 5
β’
(βπ β
β (πβ2) β₯
π΄ β if(βπ β β (πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) =
0) |
3 | 1, 2 | sylan9eq 2791 |
. . . 4
β’ ((π΄ β β β§
βπ β β
(πβ2) β₯ π΄) β (ΞΌβπ΄) = 0) |
4 | 3 | fveq2d 6895 |
. . 3
β’ ((π΄ β β β§
βπ β β
(πβ2) β₯ π΄) β
(absβ(ΞΌβπ΄))
= (absβ0)) |
5 | | abs0 15237 |
. . . 4
β’
(absβ0) = 0 |
6 | | 0le1 11742 |
. . . 4
β’ 0 β€
1 |
7 | 5, 6 | eqbrtri 5169 |
. . 3
β’
(absβ0) β€ 1 |
8 | 4, 7 | eqbrtrdi 5187 |
. 2
β’ ((π΄ β β β§
βπ β β
(πβ2) β₯ π΄) β
(absβ(ΞΌβπ΄))
β€ 1) |
9 | | iffalse 4537 |
. . . . . 6
β’ (Β¬
βπ β β
(πβ2) β₯ π΄ β if(βπ β β (πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) =
(-1β(β―β{π
β β β£ π
β₯ π΄}))) |
10 | 1, 9 | sylan9eq 2791 |
. . . . 5
β’ ((π΄ β β β§ Β¬
βπ β β
(πβ2) β₯ π΄) β (ΞΌβπ΄) =
(-1β(β―β{π
β β β£ π
β₯ π΄}))) |
11 | 10 | fveq2d 6895 |
. . . 4
β’ ((π΄ β β β§ Β¬
βπ β β
(πβ2) β₯ π΄) β
(absβ(ΞΌβπ΄))
= (absβ(-1β(β―β{π β β β£ π β₯ π΄})))) |
12 | | neg1cn 12331 |
. . . . . . 7
β’ -1 β
β |
13 | | prmdvdsfi 26848 |
. . . . . . . 8
β’ (π΄ β β β {π β β β£ π β₯ π΄} β Fin) |
14 | | hashcl 14321 |
. . . . . . . 8
β’ ({π β β β£ π β₯ π΄} β Fin β (β―β{π β β β£ π β₯ π΄}) β
β0) |
15 | 13, 14 | syl 17 |
. . . . . . 7
β’ (π΄ β β β
(β―β{π β
β β£ π β₯
π΄}) β
β0) |
16 | | absexp 15256 |
. . . . . . 7
β’ ((-1
β β β§ (β―β{π β β β£ π β₯ π΄}) β β0) β
(absβ(-1β(β―β{π β β β£ π β₯ π΄}))) =
((absβ-1)β(β―β{π β β β£ π β₯ π΄}))) |
17 | 12, 15, 16 | sylancr 586 |
. . . . . 6
β’ (π΄ β β β
(absβ(-1β(β―β{π β β β£ π β₯ π΄}))) =
((absβ-1)β(β―β{π β β β£ π β₯ π΄}))) |
18 | | ax-1cn 11171 |
. . . . . . . . . 10
β’ 1 β
β |
19 | 18 | absnegi 15352 |
. . . . . . . . 9
β’
(absβ-1) = (absβ1) |
20 | | abs1 15249 |
. . . . . . . . 9
β’
(absβ1) = 1 |
21 | 19, 20 | eqtri 2759 |
. . . . . . . 8
β’
(absβ-1) = 1 |
22 | 21 | oveq1i 7422 |
. . . . . . 7
β’
((absβ-1)β(β―β{π β β β£ π β₯ π΄})) = (1β(β―β{π β β β£ π β₯ π΄})) |
23 | 15 | nn0zd 12589 |
. . . . . . . 8
β’ (π΄ β β β
(β―β{π β
β β£ π β₯
π΄}) β
β€) |
24 | | 1exp 14062 |
. . . . . . . 8
β’
((β―β{π
β β β£ π
β₯ π΄}) β β€
β (1β(β―β{π β β β£ π β₯ π΄})) = 1) |
25 | 23, 24 | syl 17 |
. . . . . . 7
β’ (π΄ β β β
(1β(β―β{π
β β β£ π
β₯ π΄})) =
1) |
26 | 22, 25 | eqtrid 2783 |
. . . . . 6
β’ (π΄ β β β
((absβ-1)β(β―β{π β β β£ π β₯ π΄})) = 1) |
27 | 17, 26 | eqtrd 2771 |
. . . . 5
β’ (π΄ β β β
(absβ(-1β(β―β{π β β β£ π β₯ π΄}))) = 1) |
28 | 27 | adantr 480 |
. . . 4
β’ ((π΄ β β β§ Β¬
βπ β β
(πβ2) β₯ π΄) β
(absβ(-1β(β―β{π β β β£ π β₯ π΄}))) = 1) |
29 | 11, 28 | eqtrd 2771 |
. . 3
β’ ((π΄ β β β§ Β¬
βπ β β
(πβ2) β₯ π΄) β
(absβ(ΞΌβπ΄))
= 1) |
30 | | 1le1 11847 |
. . 3
β’ 1 β€
1 |
31 | 29, 30 | eqbrtrdi 5187 |
. 2
β’ ((π΄ β β β§ Β¬
βπ β β
(πβ2) β₯ π΄) β
(absβ(ΞΌβπ΄))
β€ 1) |
32 | 8, 31 | pm2.61dan 810 |
1
β’ (π΄ β β β
(absβ(ΞΌβπ΄))
β€ 1) |