![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muval1 | Structured version Visualization version GIF version |
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
muval1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muval 27190 | . . 3 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
3 | exprmfct 16738 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) | |
4 | 3 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) |
5 | prmnn 16708 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
6 | simpl2 1191 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) | |
7 | eluz2b2 12961 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃)) | |
8 | 6, 7 | sylib 218 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃 ∈ ℕ ∧ 1 < 𝑃)) |
9 | 8 | simpld 494 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℕ) |
10 | dvdssqlem 16600 | . . . . . . 7 ⊢ ((𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) | |
11 | 5, 9, 10 | syl2an2 686 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) |
12 | simpl3 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∥ 𝐴) | |
13 | prmz 16709 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
14 | 13 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
15 | zsqcl 14166 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
17 | eluzelz 12886 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
18 | zsqcl 14166 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ) | |
19 | 6, 17, 18 | 3syl 18 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∈ ℤ) |
20 | simpl1 1190 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) | |
21 | 20 | nnzd 12638 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
22 | dvdstr 16328 | . . . . . . . 8 ⊢ (((𝑝↑2) ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) | |
23 | 16, 19, 21, 22 | syl3anc 1370 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) |
24 | 12, 23 | mpan2d 694 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ (𝑃↑2) → (𝑝↑2) ∥ 𝐴)) |
25 | 11, 24 | sylbid 240 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 → (𝑝↑2) ∥ 𝐴)) |
26 | 25 | reximdva 3166 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
27 | 4, 26 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) |
28 | 27 | iftrued 4539 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) |
29 | 2, 28 | eqtrd 2775 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ifcif 4531 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 < clt 11293 -cneg 11491 ℕcn 12264 2c2 12319 ℤcz 12611 ℤ≥cuz 12876 ↑cexp 14099 ♯chash 14366 ∥ cdvds 16287 ℙcprime 16705 μcmu 27153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 df-mu 27159 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |