Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > muval1 | Structured version Visualization version GIF version |
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
muval1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muval 26352 | . . 3 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
3 | exprmfct 16476 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) | |
4 | 3 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) |
5 | prmnn 16446 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
6 | simpl2 1191 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) | |
7 | eluz2b2 12731 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃)) | |
8 | 6, 7 | sylib 217 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃 ∈ ℕ ∧ 1 < 𝑃)) |
9 | 8 | simpld 495 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℕ) |
10 | dvdssqlem 16338 | . . . . . . 7 ⊢ ((𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) | |
11 | 5, 9, 10 | syl2an2 683 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) |
12 | simpl3 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∥ 𝐴) | |
13 | prmz 16447 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
14 | 13 | adantl 482 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
15 | zsqcl 13918 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
17 | eluzelz 12662 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
18 | zsqcl 13918 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ) | |
19 | 6, 17, 18 | 3syl 18 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∈ ℤ) |
20 | simpl1 1190 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) | |
21 | 20 | nnzd 12495 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
22 | dvdstr 16072 | . . . . . . . 8 ⊢ (((𝑝↑2) ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) | |
23 | 16, 19, 21, 22 | syl3anc 1370 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) |
24 | 12, 23 | mpan2d 691 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ (𝑃↑2) → (𝑝↑2) ∥ 𝐴)) |
25 | 11, 24 | sylbid 239 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 → (𝑝↑2) ∥ 𝐴)) |
26 | 25 | reximdva 3162 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
27 | 4, 26 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) |
28 | 27 | iftrued 4477 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) |
29 | 2, 28 | eqtrd 2777 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 {crab 3404 ifcif 4469 class class class wbr 5085 ‘cfv 6463 (class class class)co 7313 0cc0 10941 1c1 10942 < clt 11079 -cneg 11276 ℕcn 12043 2c2 12098 ℤcz 12389 ℤ≥cuz 12652 ↑cexp 13852 ♯chash 14114 ∥ cdvds 16032 ℙcprime 16443 μcmu 26315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-2o 8343 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-sup 9269 df-inf 9270 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-fz 13310 df-fl 13582 df-mod 13660 df-seq 13792 df-exp 13853 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-dvds 16033 df-gcd 16271 df-prm 16444 df-mu 26321 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |