![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muval1 | Structured version Visualization version GIF version |
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
muval1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muval 25080 | . . 3 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
2 | 1 | 3ad2ant1 1127 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
3 | exprmfct 15624 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) | |
4 | 3 | 3ad2ant2 1128 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) |
5 | prmnn 15596 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
6 | 5 | adantl 467 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ) |
7 | simpl2 1229 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) | |
8 | eluz2b2 11965 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃)) | |
9 | 7, 8 | sylib 208 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃 ∈ ℕ ∧ 1 < 𝑃)) |
10 | 9 | simpld 478 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℕ) |
11 | dvdssqlem 15488 | . . . . . . 7 ⊢ ((𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) | |
12 | 6, 10, 11 | syl2anc 567 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) |
13 | simpl3 1231 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∥ 𝐴) | |
14 | prmz 15597 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
15 | 14 | adantl 467 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
16 | zsqcl 13142 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
18 | eluzelz 11899 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
19 | zsqcl 13142 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ) | |
20 | 7, 18, 19 | 3syl 18 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∈ ℤ) |
21 | simpl1 1227 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) | |
22 | 21 | nnzd 11684 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
23 | dvdstr 15228 | . . . . . . . 8 ⊢ (((𝑝↑2) ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) | |
24 | 17, 20, 22, 23 | syl3anc 1476 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) |
25 | 13, 24 | mpan2d 668 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ (𝑃↑2) → (𝑝↑2) ∥ 𝐴)) |
26 | 12, 25 | sylbid 230 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 → (𝑝↑2) ∥ 𝐴)) |
27 | 26 | reximdva 3165 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
28 | 4, 27 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) |
29 | 28 | iftrued 4234 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) |
30 | 2, 29 | eqtrd 2805 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 {crab 3065 ifcif 4226 class class class wbr 4787 ‘cfv 6032 (class class class)co 6794 0cc0 10139 1c1 10140 < clt 10277 -cneg 10470 ℕcn 11223 2c2 11273 ℤcz 11580 ℤ≥cuz 11889 ↑cexp 13068 ♯chash 13322 ∥ cdvds 15190 ℙcprime 15593 μcmu 25043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-cnex 10195 ax-resscn 10196 ax-1cn 10197 ax-icn 10198 ax-addcl 10199 ax-addrcl 10200 ax-mulcl 10201 ax-mulrcl 10202 ax-mulcom 10203 ax-addass 10204 ax-mulass 10205 ax-distr 10206 ax-i2m1 10207 ax-1ne0 10208 ax-1rid 10209 ax-rnegex 10210 ax-rrecex 10211 ax-cnre 10212 ax-pre-lttri 10213 ax-pre-lttrn 10214 ax-pre-ltadd 10215 ax-pre-mulgt0 10216 ax-pre-sup 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-pss 3740 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5824 df-ord 5870 df-on 5871 df-lim 5872 df-suc 5873 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-riota 6755 df-ov 6797 df-oprab 6798 df-mpt2 6799 df-om 7214 df-1st 7316 df-2nd 7317 df-wrecs 7560 df-recs 7622 df-rdg 7660 df-1o 7714 df-2o 7715 df-er 7897 df-en 8111 df-dom 8112 df-sdom 8113 df-fin 8114 df-sup 8505 df-inf 8506 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 df-sub 10471 df-neg 10472 df-div 10888 df-nn 11224 df-2 11282 df-3 11283 df-n0 11496 df-z 11581 df-uz 11890 df-rp 12037 df-fz 12535 df-fl 12802 df-mod 12878 df-seq 13010 df-exp 13069 df-cj 14048 df-re 14049 df-im 14050 df-sqrt 14184 df-abs 14185 df-dvds 15191 df-gcd 15426 df-prm 15594 df-mu 25049 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |