| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muval1 | Structured version Visualization version GIF version | ||
| Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| muval1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muval 27018 | . . 3 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 3 | exprmfct 16650 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) | |
| 4 | 3 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) |
| 5 | prmnn 16620 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
| 6 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) | |
| 7 | eluz2b2 12856 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃)) | |
| 8 | 6, 7 | sylib 218 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃 ∈ ℕ ∧ 1 < 𝑃)) |
| 9 | 8 | simpld 494 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℕ) |
| 10 | dvdssqlem 16512 | . . . . . . 7 ⊢ ((𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) | |
| 11 | 5, 9, 10 | syl2an2 686 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) |
| 12 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∥ 𝐴) | |
| 13 | prmz 16621 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
| 14 | 13 | adantl 481 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
| 15 | zsqcl 14070 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
| 16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
| 17 | eluzelz 12779 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
| 18 | zsqcl 14070 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ) | |
| 19 | 6, 17, 18 | 3syl 18 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∈ ℤ) |
| 20 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) | |
| 21 | 20 | nnzd 12532 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
| 22 | dvdstr 16240 | . . . . . . . 8 ⊢ (((𝑝↑2) ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) | |
| 23 | 16, 19, 21, 22 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) |
| 24 | 12, 23 | mpan2d 694 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ (𝑃↑2) → (𝑝↑2) ∥ 𝐴)) |
| 25 | 11, 24 | sylbid 240 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 → (𝑝↑2) ∥ 𝐴)) |
| 26 | 25 | reximdva 3146 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| 27 | 4, 26 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) |
| 28 | 27 | iftrued 4492 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) |
| 29 | 2, 28 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ifcif 4484 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 < clt 11184 -cneg 11382 ℕcn 12162 2c2 12217 ℤcz 12505 ℤ≥cuz 12769 ↑cexp 14002 ♯chash 14271 ∥ cdvds 16198 ℙcprime 16617 μcmu 26981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 df-mu 26987 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |