![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muval1 | Structured version Visualization version GIF version |
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
muval1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muval 25314 | . . 3 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
2 | 1 | 3ad2ant1 1124 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
3 | exprmfct 15824 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) | |
4 | 3 | 3ad2ant2 1125 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃) |
5 | prmnn 15797 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
6 | 5 | adantl 475 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ) |
7 | simpl2 1201 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) | |
8 | eluz2b2 12072 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃)) | |
9 | 7, 8 | sylib 210 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃 ∈ ℕ ∧ 1 < 𝑃)) |
10 | 9 | simpld 490 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℕ) |
11 | dvdssqlem 15689 | . . . . . . 7 ⊢ ((𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) | |
12 | 6, 10, 11 | syl2anc 579 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2))) |
13 | simpl3 1203 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∥ 𝐴) | |
14 | prmz 15798 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
15 | 14 | adantl 475 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
16 | zsqcl 13257 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
18 | eluzelz 12006 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
19 | zsqcl 13257 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ) | |
20 | 7, 18, 19 | 3syl 18 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∈ ℤ) |
21 | simpl1 1199 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) | |
22 | 21 | nnzd 11837 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
23 | dvdstr 15429 | . . . . . . . 8 ⊢ (((𝑝↑2) ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) | |
24 | 17, 20, 22, 23 | syl3anc 1439 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) |
25 | 13, 24 | mpan2d 684 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ (𝑃↑2) → (𝑝↑2) ∥ 𝐴)) |
26 | 12, 25 | sylbid 232 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑃 → (𝑝↑2) ∥ 𝐴)) |
27 | 26 | reximdva 3198 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑃 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
28 | 4, 27 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) |
29 | 28 | iftrued 4315 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0) |
30 | 2, 29 | eqtrd 2814 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 {crab 3094 ifcif 4307 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 0cc0 10274 1c1 10275 < clt 10413 -cneg 10609 ℕcn 11378 2c2 11434 ℤcz 11732 ℤ≥cuz 11996 ↑cexp 13182 ♯chash 13439 ∥ cdvds 15391 ℙcprime 15794 μcmu 25277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-z 11733 df-uz 11997 df-rp 12142 df-fz 12648 df-fl 12916 df-mod 12992 df-seq 13124 df-exp 13183 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-dvds 15392 df-gcd 15627 df-prm 15795 df-mu 25283 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |