MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval1 Structured version   Visualization version   GIF version

Theorem muval1 26282
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
muval1 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0)

Proof of Theorem muval1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 muval 26281 . . 3 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
213ad2ant1 1132 . 2 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
3 exprmfct 16409 . . . . 5 (𝑃 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑃)
433ad2ant2 1133 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ 𝑝𝑃)
5 prmnn 16379 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6 simpl2 1191 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
7 eluz2b2 12661 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
86, 7sylib 217 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
98simpld 495 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℕ)
10 dvdssqlem 16271 . . . . . . 7 ((𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑝𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2)))
115, 9, 10syl2an2 683 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2)))
12 simpl3 1192 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∥ 𝐴)
13 prmz 16380 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1413adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
15 zsqcl 13848 . . . . . . . . 9 (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ)
1614, 15syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ)
17 eluzelz 12592 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
18 zsqcl 13848 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ)
196, 17, 183syl 18 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∈ ℤ)
20 simpl1 1190 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
2120nnzd 12425 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
22 dvdstr 16003 . . . . . . . 8 (((𝑝↑2) ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴))
2316, 19, 21, 22syl3anc 1370 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴))
2412, 23mpan2d 691 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ (𝑃↑2) → (𝑝↑2) ∥ 𝐴))
2511, 24sylbid 239 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → (𝑝↑2) ∥ 𝐴))
2625reximdva 3203 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (∃𝑝 ∈ ℙ 𝑝𝑃 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
274, 26mpd 15 . . 3 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)
2827iftrued 4467 . 2 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0)
292, 28eqtrd 2778 1 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   < clt 11009  -cneg 11206  cn 11973  2c2 12028  cz 12319  cuz 12582  cexp 13782  chash 14044  cdvds 15963  cprime 16376  μcmu 26244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-mu 26250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator