MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval1 Structured version   Visualization version   GIF version

Theorem muval1 26353
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
muval1 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0)

Proof of Theorem muval1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 muval 26352 . . 3 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
213ad2ant1 1132 . 2 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
3 exprmfct 16476 . . . . 5 (𝑃 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑃)
433ad2ant2 1133 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ 𝑝𝑃)
5 prmnn 16446 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6 simpl2 1191 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
7 eluz2b2 12731 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
86, 7sylib 217 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
98simpld 495 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℕ)
10 dvdssqlem 16338 . . . . . . 7 ((𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑝𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2)))
115, 9, 10syl2an2 683 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 ↔ (𝑝↑2) ∥ (𝑃↑2)))
12 simpl3 1192 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∥ 𝐴)
13 prmz 16447 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1413adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
15 zsqcl 13918 . . . . . . . . 9 (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ)
1614, 15syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ)
17 eluzelz 12662 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
18 zsqcl 13918 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ)
196, 17, 183syl 18 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑃↑2) ∈ ℤ)
20 simpl1 1190 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
2120nnzd 12495 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
22 dvdstr 16072 . . . . . . . 8 (((𝑝↑2) ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴))
2316, 19, 21, 22syl3anc 1370 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ 𝐴) → (𝑝↑2) ∥ 𝐴))
2412, 23mpan2d 691 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ (𝑃↑2) → (𝑝↑2) ∥ 𝐴))
2511, 24sylbid 239 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → (𝑝↑2) ∥ 𝐴))
2625reximdva 3162 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (∃𝑝 ∈ ℙ 𝑝𝑃 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
274, 26mpd 15 . . 3 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)
2827iftrued 4477 . 2 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0)
292, 28eqtrd 2777 1 ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wrex 3071  {crab 3404  ifcif 4469   class class class wbr 5085  cfv 6463  (class class class)co 7313  0cc0 10941  1c1 10942   < clt 11079  -cneg 11276  cn 12043  2c2 12098  cz 12389  cuz 12652  cexp 13852  chash 14114  cdvds 16032  cprime 16443  μcmu 26315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-inf 9270  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-z 12390  df-uz 12653  df-rp 12801  df-fz 13310  df-fl 13582  df-mod 13660  df-seq 13792  df-exp 13853  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-dvds 16033  df-gcd 16271  df-prm 16444  df-mu 26321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator