Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpval Structured version   Visualization version   GIF version

Theorem mzpval 40149
Description: Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpval (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))

Proof of Theorem mzpval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mzpcln0 40145 . . 3 (𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅)
2 intex 5206 . . 3 ((mzPolyCld‘𝑉) ≠ ∅ ↔ (mzPolyCld‘𝑉) ∈ V)
31, 2sylib 221 . 2 (𝑉 ∈ V → (mzPolyCld‘𝑉) ∈ V)
4 fveq2 6677 . . . 4 (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
54inteqd 4842 . . 3 (𝑣 = 𝑉 (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
6 df-mzp 40141 . . 3 mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
75, 6fvmptg 6776 . 2 ((𝑉 ∈ V ∧ (mzPolyCld‘𝑉) ∈ V) → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
83, 7mpdan 687 1 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  wne 2935  Vcvv 3399  c0 4212   cint 4837  cfv 6340  mzPolyCldcmzpcl 40138  mzPolycmzp 40139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-n0 11980  df-z 12066  df-mzpcl 40140  df-mzp 40141
This theorem is referenced by:  mzpincl  40151  mzpf  40153  mzpindd  40163
  Copyright terms: Public domain W3C validator