Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpval Structured version   Visualization version   GIF version

Theorem mzpval 38255
Description: Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpval (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))

Proof of Theorem mzpval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mzpcln0 38251 . . 3 (𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅)
2 intex 5054 . . 3 ((mzPolyCld‘𝑉) ≠ ∅ ↔ (mzPolyCld‘𝑉) ∈ V)
31, 2sylib 210 . 2 (𝑉 ∈ V → (mzPolyCld‘𝑉) ∈ V)
4 fveq2 6446 . . . 4 (𝑣 = 𝑉 → (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
54inteqd 4715 . . 3 (𝑣 = 𝑉 (mzPolyCld‘𝑣) = (mzPolyCld‘𝑉))
6 df-mzp 38247 . . 3 mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
75, 6fvmptg 6540 . 2 ((𝑉 ∈ V ∧ (mzPolyCld‘𝑉) ∈ V) → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
83, 7mpdan 677 1 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  wne 2969  Vcvv 3398  c0 4141   cint 4710  cfv 6135  mzPolyCldcmzpcl 38244  mzPolycmzp 38245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-mzpcl 38246  df-mzp 38247
This theorem is referenced by:  mzpincl  38257  mzpf  38259  mzpindd  38269
  Copyright terms: Public domain W3C validator