Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsacs Structured version   Visualization version   GIF version

Theorem nacsacs 41437
Description: A closure system of Noetherian type is algebraic. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
nacsacs (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋))

Proof of Theorem nacsacs
StepHypRef Expression
1 eqid 2732 . . 3 (mrCls‘𝐶) = (mrCls‘𝐶)
21isnacs2 41434 . 2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ((mrCls‘𝐶) “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
32simplbi 498 1 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cin 3947  𝒫 cpw 4602  cima 5679  cfv 6543  Fincfn 8938  mrClscmrc 17526  ACScacs 17528  NoeACScnacs 41430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-mre 17529  df-mrc 17530  df-acs 17532  df-nacs 41431
This theorem is referenced by:  isnacs3  41438
  Copyright terms: Public domain W3C validator