Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg3 Structured version   Visualization version   GIF version

Theorem mrefg3 42696
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrefg3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg3
StepHypRef Expression
1 isnacs.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrefg2 42695 . . 3 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
4 eqss 3962 . . . 4 (𝑆 = (𝐹𝑔) ↔ (𝑆 ⊆ (𝐹𝑔) ∧ (𝐹𝑔) ⊆ 𝑆))
5 simpll 766 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
6 inss1 4200 . . . . . . . . 9 (𝒫 𝑆 ∩ Fin) ⊆ 𝒫 𝑆
76sseli 3942 . . . . . . . 8 (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ∈ 𝒫 𝑆)
87elpwid 4572 . . . . . . 7 (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔𝑆)
98adantl 481 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑔𝑆)
10 simplr 768 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐶)
111mrcsscl 17581 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑆𝑆𝐶) → (𝐹𝑔) ⊆ 𝑆)
125, 9, 10, 11syl3anc 1373 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝐹𝑔) ⊆ 𝑆)
1312biantrud 531 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 ⊆ (𝐹𝑔) ↔ (𝑆 ⊆ (𝐹𝑔) ∧ (𝐹𝑔) ⊆ 𝑆)))
144, 13bitr4id 290 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 = (𝐹𝑔) ↔ 𝑆 ⊆ (𝐹𝑔)))
1514rexbidva 3155 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
163, 15bitrd 279 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563  cfv 6511  Fincfn 8918  Moorecmre 17543  mrClscmrc 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-mre 17547  df-mrc 17548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator