Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg3 Structured version   Visualization version   GIF version

Theorem mrefg3 42747
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrefg3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg3
StepHypRef Expression
1 isnacs.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrefg2 42746 . . 3 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
4 eqss 3950 . . . 4 (𝑆 = (𝐹𝑔) ↔ (𝑆 ⊆ (𝐹𝑔) ∧ (𝐹𝑔) ⊆ 𝑆))
5 simpll 766 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
6 inss1 4187 . . . . . . . . 9 (𝒫 𝑆 ∩ Fin) ⊆ 𝒫 𝑆
76sseli 3930 . . . . . . . 8 (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ∈ 𝒫 𝑆)
87elpwid 4559 . . . . . . 7 (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔𝑆)
98adantl 481 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑔𝑆)
10 simplr 768 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐶)
111mrcsscl 17526 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑆𝑆𝐶) → (𝐹𝑔) ⊆ 𝑆)
125, 9, 10, 11syl3anc 1373 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝐹𝑔) ⊆ 𝑆)
1312biantrud 531 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 ⊆ (𝐹𝑔) ↔ (𝑆 ⊆ (𝐹𝑔) ∧ (𝐹𝑔) ⊆ 𝑆)))
144, 13bitr4id 290 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 = (𝐹𝑔) ↔ 𝑆 ⊆ (𝐹𝑔)))
1514rexbidva 3154 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
163, 15bitrd 279 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cin 3901  wss 3902  𝒫 cpw 4550  cfv 6481  Fincfn 8869  Moorecmre 17484  mrClscmrc 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-mre 17488  df-mrc 17489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator