| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrefg3 | Structured version Visualization version GIF version | ||
| Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| isnacs.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrefg3 | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnacs.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 2 | 1 | mrefg2 42705 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
| 4 | eqss 3979 | . . . 4 ⊢ (𝑆 = (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆)) | |
| 5 | simpll 766 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋)) | |
| 6 | inss1 4217 | . . . . . . . . 9 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ 𝒫 𝑆 | |
| 7 | 6 | sseli 3959 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ∈ 𝒫 𝑆) |
| 8 | 7 | elpwid 4589 | . . . . . . 7 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ⊆ 𝑆) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑔 ⊆ 𝑆) |
| 10 | simplr 768 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆 ∈ 𝐶) | |
| 11 | 1 | mrcsscl 17637 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ 𝑆 ∧ 𝑆 ∈ 𝐶) → (𝐹‘𝑔) ⊆ 𝑆) |
| 12 | 5, 9, 10, 11 | syl3anc 1373 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝐹‘𝑔) ⊆ 𝑆) |
| 13 | 12 | biantrud 531 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 ⊆ (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆))) |
| 14 | 4, 13 | bitr4id 290 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 = (𝐹‘𝑔) ↔ 𝑆 ⊆ (𝐹‘𝑔))) |
| 15 | 14 | rexbidva 3163 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
| 16 | 3, 15 | bitrd 279 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 ‘cfv 6536 Fincfn 8964 Moorecmre 17599 mrClscmrc 17600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-mre 17603 df-mrc 17604 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |