Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrefg3 | Structured version Visualization version GIF version |
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
isnacs.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrefg3 | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnacs.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrefg2 40445 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
4 | eqss 3932 | . . . 4 ⊢ (𝑆 = (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆)) | |
5 | simpll 763 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋)) | |
6 | inss1 4159 | . . . . . . . . 9 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ 𝒫 𝑆 | |
7 | 6 | sseli 3913 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ∈ 𝒫 𝑆) |
8 | 7 | elpwid 4541 | . . . . . . 7 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ⊆ 𝑆) |
9 | 8 | adantl 481 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑔 ⊆ 𝑆) |
10 | simplr 765 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆 ∈ 𝐶) | |
11 | 1 | mrcsscl 17246 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ 𝑆 ∧ 𝑆 ∈ 𝐶) → (𝐹‘𝑔) ⊆ 𝑆) |
12 | 5, 9, 10, 11 | syl3anc 1369 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝐹‘𝑔) ⊆ 𝑆) |
13 | 12 | biantrud 531 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 ⊆ (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆))) |
14 | 4, 13 | bitr4id 289 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 = (𝐹‘𝑔) ↔ 𝑆 ⊆ (𝐹‘𝑔))) |
15 | 14 | rexbidva 3224 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
16 | 3, 15 | bitrd 278 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ‘cfv 6418 Fincfn 8691 Moorecmre 17208 mrClscmrc 17209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-mre 17212 df-mrc 17213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |