![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrefg3 | Structured version Visualization version GIF version |
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
isnacs.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrefg3 | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnacs.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrefg2 38051 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
3 | 2 | adantr 473 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
4 | simpll 784 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋)) | |
5 | inss1 4029 | . . . . . . . . 9 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ 𝒫 𝑆 | |
6 | 5 | sseli 3795 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ∈ 𝒫 𝑆) |
7 | 6 | elpwid 4362 | . . . . . . 7 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ⊆ 𝑆) |
8 | 7 | adantl 474 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑔 ⊆ 𝑆) |
9 | simplr 786 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆 ∈ 𝐶) | |
10 | 1 | mrcsscl 16594 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ 𝑆 ∧ 𝑆 ∈ 𝐶) → (𝐹‘𝑔) ⊆ 𝑆) |
11 | 4, 8, 9, 10 | syl3anc 1491 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝐹‘𝑔) ⊆ 𝑆) |
12 | 11 | biantrud 528 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 ⊆ (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆))) |
13 | eqss 3814 | . . . 4 ⊢ (𝑆 = (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆)) | |
14 | 12, 13 | syl6rbbr 282 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 = (𝐹‘𝑔) ↔ 𝑆 ⊆ (𝐹‘𝑔))) |
15 | 14 | rexbidva 3231 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
16 | 3, 15 | bitrd 271 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃wrex 3091 ∩ cin 3769 ⊆ wss 3770 𝒫 cpw 4350 ‘cfv 6102 Fincfn 8196 Moorecmre 16556 mrClscmrc 16557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-int 4669 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-mre 16560 df-mrc 16561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |