Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg3 Structured version   Visualization version   GIF version

Theorem mrefg3 42828
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrefg3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg3
StepHypRef Expression
1 isnacs.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrefg2 42827 . . 3 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
4 eqss 3946 . . . 4 (𝑆 = (𝐹𝑔) ↔ (𝑆 ⊆ (𝐹𝑔) ∧ (𝐹𝑔) ⊆ 𝑆))
5 simpll 766 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
6 inss1 4186 . . . . . . . . 9 (𝒫 𝑆 ∩ Fin) ⊆ 𝒫 𝑆
76sseli 3926 . . . . . . . 8 (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ∈ 𝒫 𝑆)
87elpwid 4560 . . . . . . 7 (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔𝑆)
98adantl 481 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑔𝑆)
10 simplr 768 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐶)
111mrcsscl 17530 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑆𝑆𝐶) → (𝐹𝑔) ⊆ 𝑆)
125, 9, 10, 11syl3anc 1373 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝐹𝑔) ⊆ 𝑆)
1312biantrud 531 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 ⊆ (𝐹𝑔) ↔ (𝑆 ⊆ (𝐹𝑔) ∧ (𝐹𝑔) ⊆ 𝑆)))
144, 13bitr4id 290 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 = (𝐹𝑔) ↔ 𝑆 ⊆ (𝐹𝑔)))
1514rexbidva 3155 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
163, 15bitrd 279 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  cin 3897  wss 3898  𝒫 cpw 4551  cfv 6488  Fincfn 8877  Moorecmre 17488  mrClscmrc 17489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-mre 17492  df-mrc 17493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator