![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrefg3 | Structured version Visualization version GIF version |
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
isnacs.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrefg3 | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnacs.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrefg2 41377 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
3 | 2 | adantr 482 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
4 | eqss 3995 | . . . 4 ⊢ (𝑆 = (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆)) | |
5 | simpll 766 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋)) | |
6 | inss1 4226 | . . . . . . . . 9 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ 𝒫 𝑆 | |
7 | 6 | sseli 3976 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ∈ 𝒫 𝑆) |
8 | 7 | elpwid 4609 | . . . . . . 7 ⊢ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) → 𝑔 ⊆ 𝑆) |
9 | 8 | adantl 483 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑔 ⊆ 𝑆) |
10 | simplr 768 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆 ∈ 𝐶) | |
11 | 1 | mrcsscl 17559 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ 𝑆 ∧ 𝑆 ∈ 𝐶) → (𝐹‘𝑔) ⊆ 𝑆) |
12 | 5, 9, 10, 11 | syl3anc 1372 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝐹‘𝑔) ⊆ 𝑆) |
13 | 12 | biantrud 533 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 ⊆ (𝐹‘𝑔) ↔ (𝑆 ⊆ (𝐹‘𝑔) ∧ (𝐹‘𝑔) ⊆ 𝑆))) |
14 | 4, 13 | bitr4id 290 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) ∧ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) → (𝑆 = (𝐹‘𝑔) ↔ 𝑆 ⊆ (𝐹‘𝑔))) |
15 | 14 | rexbidva 3177 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
16 | 3, 15 | bitrd 279 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∩ cin 3945 ⊆ wss 3946 𝒫 cpw 4600 ‘cfv 6539 Fincfn 8934 Moorecmre 17521 mrClscmrc 17522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-fv 6547 df-mre 17525 df-mrc 17526 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |