Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapd | Structured version Visualization version GIF version |
Description: Deduction form of elmapg 8628. (Contributed by BJ, 11-Apr-2020.) |
Ref | Expression |
---|---|
elmapd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elmapd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
elmapd | ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elmapd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | elmapg 8628 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
Copyright terms: Public domain | W3C validator |