MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulne0b Structured version   Visualization version   GIF version

Theorem mulne0b 11856
Description: The product of two nonzero numbers is nonzero. (Contributed by NM, 1-Aug-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
mulne0b ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด โ‰  0 โˆง ๐ต โ‰  0) โ†” (๐ด ยท ๐ต) โ‰  0))

Proof of Theorem mulne0b
StepHypRef Expression
1 neanior 3029 . 2 ((๐ด โ‰  0 โˆง ๐ต โ‰  0) โ†” ยฌ (๐ด = 0 โˆจ ๐ต = 0))
2 mul0or 11855 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) = 0 โ†” (๐ด = 0 โˆจ ๐ต = 0)))
32necon3abid 2971 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) โ‰  0 โ†” ยฌ (๐ด = 0 โˆจ ๐ต = 0)))
41, 3bitr4id 290 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด โ‰  0 โˆง ๐ต โ‰  0) โ†” (๐ด ยท ๐ต) โ‰  0))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆจ wo 844   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2934  (class class class)co 7404  โ„‚cc 11107  0cc0 11109   ยท cmul 11114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448
This theorem is referenced by:  mulne0  11857  mulne0bd  11866  dquartlem1  26733  dquart  26735  efrlim  26851  efrlimOLD  26852
  Copyright terms: Public domain W3C validator