![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lidldomnnring | Structured version Visualization version GIF version |
Description: A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.) |
Ref | Expression |
---|---|
lidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
lidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
zlidlring.b | ⊢ 𝐵 = (Base‘𝑅) |
zlidlring.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lidldomnnring | ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neanior 3054 | . . . . 5 ⊢ ((𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵) ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) | |
2 | 1 | biimpi 208 | . . . 4 ⊢ ((𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
3 | 2 | 3adant1 1110 | . . 3 ⊢ ((𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
4 | 3 | adantl 474 | . 2 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
5 | df-nel 3068 | . . 3 ⊢ (𝐼 ∉ Ring ↔ ¬ 𝐼 ∈ Ring) | |
6 | lidlabl.l | . . . . . 6 ⊢ 𝐿 = (LIdeal‘𝑅) | |
7 | lidlabl.i | . . . . . 6 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
8 | zlidlring.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
9 | zlidlring.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
10 | 6, 7, 8, 9 | uzlidlring 43504 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
11 | 10 | 3ad2antr1 1168 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
12 | 11 | notbid 310 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → (¬ 𝐼 ∈ Ring ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
13 | 5, 12 | syl5bb 275 | . 2 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → (𝐼 ∉ Ring ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
14 | 4, 13 | mpbird 249 | 1 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∉ wnel 3067 {csn 4435 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 ↾s cress 16330 0gc0g 16559 Ringcrg 19010 LIdealclidl 19654 Domncdomn 19764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-sca 16427 df-vsca 16428 df-ip 16429 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-grp 17884 df-minusg 17885 df-sbg 17886 df-subg 18050 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-subrg 19246 df-lmod 19348 df-lss 19416 df-sra 19656 df-rgmod 19657 df-lidl 19658 df-nzr 19742 df-domn 19768 df-rng0 43450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |