Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidldomnnring Structured version   Visualization version   GIF version

Theorem lidldomnnring 44129
Description: A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
zlidlring.b 𝐵 = (Base‘𝑅)
zlidlring.0 0 = (0g𝑅)
Assertion
Ref Expression
lidldomnnring ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵)) → 𝐼 ∉ Ring)

Proof of Theorem lidldomnnring
StepHypRef Expression
1 neanior 3106 . . . . 5 ((𝑈 ≠ { 0 } ∧ 𝑈𝐵) ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))
21biimpi 217 . . . 4 ((𝑈 ≠ { 0 } ∧ 𝑈𝐵) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))
323adant1 1122 . . 3 ((𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))
43adantl 482 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵)) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))
5 df-nel 3121 . . 3 (𝐼 ∉ Ring ↔ ¬ 𝐼 ∈ Ring)
6 lidlabl.l . . . . . 6 𝐿 = (LIdeal‘𝑅)
7 lidlabl.i . . . . . 6 𝐼 = (𝑅s 𝑈)
8 zlidlring.b . . . . . 6 𝐵 = (Base‘𝑅)
9 zlidlring.0 . . . . . 6 0 = (0g𝑅)
106, 7, 8, 9uzlidlring 44128 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
11103ad2antr1 1180 . . . 4 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵)) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
1211notbid 319 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵)) → (¬ 𝐼 ∈ Ring ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
135, 12syl5bb 284 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵)) → (𝐼 ∉ Ring ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
144, 13mpbird 258 1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵)) → 𝐼 ∉ Ring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wnel 3120  {csn 4557  cfv 6348  (class class class)co 7145  Basecbs 16471  s cress 16472  0gc0g 16701  Ringcrg 19226  LIdealclidl 19871  Domncdomn 19981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-subrg 19462  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-lidl 19875  df-nzr 19959  df-domn 19985  df-rng0 44074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator