Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lidldomnnring | Structured version Visualization version GIF version |
Description: A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.) |
Ref | Expression |
---|---|
lidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
lidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
zlidlring.b | ⊢ 𝐵 = (Base‘𝑅) |
zlidlring.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lidldomnnring | ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neanior 3026 | . . . . 5 ⊢ ((𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵) ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) | |
2 | 1 | biimpi 219 | . . . 4 ⊢ ((𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
3 | 2 | 3adant1 1131 | . . 3 ⊢ ((𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
4 | 3 | adantl 485 | . 2 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)) |
5 | df-nel 3039 | . . 3 ⊢ (𝐼 ∉ Ring ↔ ¬ 𝐼 ∈ Ring) | |
6 | lidlabl.l | . . . . . 6 ⊢ 𝐿 = (LIdeal‘𝑅) | |
7 | lidlabl.i | . . . . . 6 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
8 | zlidlring.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
9 | zlidlring.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
10 | 6, 7, 8, 9 | uzlidlring 45013 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
11 | 10 | 3ad2antr1 1189 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
12 | 11 | notbid 321 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → (¬ 𝐼 ∈ Ring ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
13 | 5, 12 | syl5bb 286 | . 2 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → (𝐼 ∉ Ring ↔ ¬ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) |
14 | 4, 13 | mpbird 260 | 1 ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 ∉ wnel 3038 {csn 4517 ‘cfv 6340 (class class class)co 7171 Basecbs 16587 ↾s cress 16588 0gc0g 16817 Ringcrg 19417 LIdealclidl 20062 Domncdomn 20173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-om 7601 df-1st 7715 df-2nd 7716 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-nn 11718 df-2 11780 df-3 11781 df-4 11782 df-5 11783 df-6 11784 df-7 11785 df-8 11786 df-ndx 16590 df-slot 16591 df-base 16593 df-sets 16594 df-ress 16595 df-plusg 16682 df-mulr 16683 df-sca 16685 df-vsca 16686 df-ip 16687 df-0g 16819 df-mgm 17969 df-sgrp 18018 df-mnd 18029 df-grp 18223 df-minusg 18224 df-sbg 18225 df-subg 18395 df-cmn 19027 df-abl 19028 df-mgp 19360 df-ur 19372 df-ring 19419 df-subrg 19653 df-lmod 19756 df-lss 19824 df-sra 20064 df-rgmod 20065 df-lidl 20066 df-nzr 20151 df-domn 20177 df-rng0 44959 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |