| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecvsn0 | Structured version Visualization version GIF version | ||
| Description: A scalar product is nonzero iff both of its factors are nonzero. (Contributed by NM, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| lvecmul0or.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecmul0or.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecmul0or.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecmul0or.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecmul0or.o | ⊢ 𝑂 = (0g‘𝐹) |
| lvecmul0or.z | ⊢ 0 = (0g‘𝑊) |
| lvecmul0or.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecmul0or.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecmul0or.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lvecvsn0 | ⊢ (𝜑 → ((𝐴 · 𝑋) ≠ 0 ↔ (𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmul0or.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lvecmul0or.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 3 | lvecmul0or.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | lvecmul0or.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | lvecmul0or.o | . . . 4 ⊢ 𝑂 = (0g‘𝐹) | |
| 6 | lvecmul0or.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 7 | lvecmul0or.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 8 | lvecmul0or.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 9 | lvecmul0or.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lvecvs0or 21038 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂 ∨ 𝑋 = 0 ))) |
| 11 | 10 | necon3abid 2962 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) ≠ 0 ↔ ¬ (𝐴 = 𝑂 ∨ 𝑋 = 0 ))) |
| 12 | neanior 3019 | . 2 ⊢ ((𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ) ↔ ¬ (𝐴 = 𝑂 ∨ 𝑋 = 0 )) | |
| 13 | 11, 12 | bitr4di 289 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) ≠ 0 ↔ (𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 Scalarcsca 17156 ·𝑠 cvsca 17157 0gc0g 17335 LVecclvec 21029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-drng 20639 df-lmod 20788 df-lvec 21030 |
| This theorem is referenced by: lspsneq 21052 lspfixed 21058 dochkr1 41496 mapdpglem18 41707 hdmap14lem4a 41889 prjspvs 42622 lindssnlvec 48497 |
| Copyright terms: Public domain | W3C validator |