| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnmuln0 | Structured version Visualization version GIF version | ||
| Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| domneq0.b | ⊢ 𝐵 = (Base‘𝑅) |
| domneq0.t | ⊢ · = (.r‘𝑅) |
| domneq0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| domnmuln0 | ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) | |
| 2 | neanior 3022 | . . . . . 6 ⊢ ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 )) | |
| 3 | domneq0.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | domneq0.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 5 | domneq0.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 6 | 3, 4, 5 | domneq0 20632 | . . . . . . . 8 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 7 | 6 | 3expb 1120 | . . . . . . 7 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 8 | 7 | necon3abid 2965 | . . . . . 6 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌) ≠ 0 ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 9 | 2, 8 | bitr4id 290 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ (𝑋 · 𝑌) ≠ 0 )) |
| 10 | 9 | biimpd 229 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) → (𝑋 · 𝑌) ≠ 0 )) |
| 11 | 10 | expimpd 453 | . . 3 ⊢ (𝑅 ∈ Domn → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 )) |
| 12 | 1, 11 | biimtrid 242 | . 2 ⊢ (𝑅 ∈ Domn → (((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 )) |
| 13 | 12 | 3impib 1116 | 1 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 .rcmulr 17169 0gc0g 17350 Domncdomn 20616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-nzr 20437 df-domn 20619 |
| This theorem is referenced by: isdomn4 20640 drngmcl 20674 abvtrivg 20757 domnprodn0 33285 idomnnzpownz 42298 idomnnzgmulnz 42299 aks6d1c5lem2 42304 domnexpgn0cl 42693 deg1mhm 43357 domnmsuppn0 48531 |
| Copyright terms: Public domain | W3C validator |