![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnmuln0 | Structured version Visualization version GIF version |
Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
domneq0.b | ⊢ 𝐵 = (Base‘𝑅) |
domneq0.t | ⊢ · = (.r‘𝑅) |
domneq0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
domnmuln0 | ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 647 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) | |
2 | domneq0.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
3 | domneq0.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
4 | domneq0.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
5 | 2, 3, 4 | domneq0 19620 | . . . . . . . 8 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
6 | 5 | 3expb 1150 | . . . . . . 7 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
7 | 6 | necon3abid 3007 | . . . . . 6 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌) ≠ 0 ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
8 | neanior 3063 | . . . . . 6 ⊢ ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 )) | |
9 | 7, 8 | syl6rbbr 282 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ (𝑋 · 𝑌) ≠ 0 )) |
10 | 9 | biimpd 221 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) → (𝑋 · 𝑌) ≠ 0 )) |
11 | 10 | expimpd 446 | . . 3 ⊢ (𝑅 ∈ Domn → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 )) |
12 | 1, 11 | syl5bi 234 | . 2 ⊢ (𝑅 ∈ Domn → (((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 )) |
13 | 12 | 3impib 1145 | 1 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 .rcmulr 16268 0gc0g 16415 Domncdomn 19603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-plusg 16280 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-minusg 17742 df-mgp 18806 df-ring 18865 df-nzr 19581 df-domn 19607 |
This theorem is referenced by: abvn0b 19625 deg1mhm 38570 domnmsuppn0 42949 |
Copyright terms: Public domain | W3C validator |