MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnmuln0 Structured version   Visualization version   GIF version

Theorem domnmuln0 20687
Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domnmuln0 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )

Proof of Theorem domnmuln0
StepHypRef Expression
1 an4 654 . . 3 (((𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) ↔ ((𝑋𝐵𝑌𝐵) ∧ (𝑋0𝑌0 )))
2 neanior 3025 . . . . . 6 ((𝑋0𝑌0 ) ↔ ¬ (𝑋 = 0𝑌 = 0 ))
3 domneq0.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
4 domneq0.t . . . . . . . . 9 · = (.r𝑅)
5 domneq0.z . . . . . . . . 9 0 = (0g𝑅)
63, 4, 5domneq0 20686 . . . . . . . 8 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
763expb 1117 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
87necon3abid 2967 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 · 𝑌) ≠ 0 ↔ ¬ (𝑋 = 0𝑌 = 0 )))
92, 8bitr4id 289 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋0𝑌0 ) ↔ (𝑋 · 𝑌) ≠ 0 ))
109biimpd 228 . . . 4 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋0𝑌0 ) → (𝑋 · 𝑌) ≠ 0 ))
1110expimpd 452 . . 3 (𝑅 ∈ Domn → (((𝑋𝐵𝑌𝐵) ∧ (𝑋0𝑌0 )) → (𝑋 · 𝑌) ≠ 0 ))
121, 11biimtrid 241 . 2 (𝑅 ∈ Domn → (((𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 ))
13123impib 1113 1 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  cfv 6554  (class class class)co 7424  Basecbs 17213  .rcmulr 17267  0gc0g 17454  Domncdomn 20670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-nzr 20495  df-domn 20673
This theorem is referenced by:  isdomn4  20694  drngmcl  20728  abvtrivg  20812  domnprodn0  33130  idomnnzpownz  41830  idomnnzgmulnz  41831  aks6d1c5lem2  41836  deg1mhm  42865  domnmsuppn0  47748
  Copyright terms: Public domain W3C validator