| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om00el | Structured version Visualization version GIF version | ||
| Description: The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004.) |
| Ref | Expression |
|---|---|
| om00el | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om00 8539 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) | |
| 2 | 1 | necon3abid 2961 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ≠ ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 3 | omcl 8500 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) | |
| 4 | on0eln0 6389 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ On → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅)) |
| 6 | on0eln0 6389 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 7 | on0eln0 6389 | . . . 4 ⊢ (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 8 | 6, 7 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ↔ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))) |
| 9 | neanior 3018 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅)) | |
| 10 | 8, 9 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 11 | 2, 5, 10 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 Oncon0 6332 (class class class)co 7387 ·o comu 8432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 |
| This theorem is referenced by: odi 8543 oeoe 8563 omxpenlem 9042 |
| Copyright terms: Public domain | W3C validator |