![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om00el | Structured version Visualization version GIF version |
Description: The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004.) |
Ref | Expression |
---|---|
om00el | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om00 8621 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) | |
2 | 1 | necon3abid 2977 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ≠ ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
3 | omcl 8582 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) | |
4 | on0eln0 6448 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ On → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅)) |
6 | on0eln0 6448 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
7 | on0eln0 6448 | . . . 4 ⊢ (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) | |
8 | 6, 7 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ↔ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))) |
9 | neanior 3035 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅)) | |
10 | 8, 9 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
11 | 2, 5, 10 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∅c0 4342 Oncon0 6392 (class class class)co 7438 ·o comu 8512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-omul 8519 |
This theorem is referenced by: odi 8625 oeoe 8645 omxpenlem 9121 |
Copyright terms: Public domain | W3C validator |