| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om00el | Structured version Visualization version GIF version | ||
| Description: The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004.) |
| Ref | Expression |
|---|---|
| om00el | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om00 8485 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) | |
| 2 | 1 | necon3abid 2964 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ≠ ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 3 | omcl 8446 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) | |
| 4 | on0eln0 6358 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ On → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅)) |
| 6 | on0eln0 6358 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 7 | on0eln0 6358 | . . . 4 ⊢ (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 8 | 6, 7 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ↔ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))) |
| 9 | neanior 3021 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅)) | |
| 10 | 8, 9 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 11 | 2, 5, 10 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 Oncon0 6301 (class class class)co 7341 ·o comu 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 |
| This theorem is referenced by: odi 8489 oeoe 8509 omxpenlem 8986 |
| Copyright terms: Public domain | W3C validator |