![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngmulne0 | Structured version Visualization version GIF version |
Description: A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
drngmuleq0.b | โข ๐ต = (Baseโ๐ ) |
drngmuleq0.o | โข 0 = (0gโ๐ ) |
drngmuleq0.t | โข ยท = (.rโ๐ ) |
drngmuleq0.r | โข (๐ โ ๐ โ DivRing) |
drngmuleq0.x | โข (๐ โ ๐ โ ๐ต) |
drngmuleq0.y | โข (๐ โ ๐ โ ๐ต) |
Ref | Expression |
---|---|
drngmulne0 | โข (๐ โ ((๐ ยท ๐) โ 0 โ (๐ โ 0 โง ๐ โ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmuleq0.b | . . . 4 โข ๐ต = (Baseโ๐ ) | |
2 | drngmuleq0.o | . . . 4 โข 0 = (0gโ๐ ) | |
3 | drngmuleq0.t | . . . 4 โข ยท = (.rโ๐ ) | |
4 | drngmuleq0.r | . . . 4 โข (๐ โ ๐ โ DivRing) | |
5 | drngmuleq0.x | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
6 | drngmuleq0.y | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
7 | 1, 2, 3, 4, 5, 6 | drngmul0or 20606 | . . 3 โข (๐ โ ((๐ ยท ๐) = 0 โ (๐ = 0 โจ ๐ = 0 ))) |
8 | 7 | necon3abid 2969 | . 2 โข (๐ โ ((๐ ยท ๐) โ 0 โ ยฌ (๐ = 0 โจ ๐ = 0 ))) |
9 | neanior 3027 | . 2 โข ((๐ โ 0 โง ๐ โ 0 ) โ ยฌ (๐ = 0 โจ ๐ = 0 )) | |
10 | 8, 9 | bitr4di 289 | 1 โข (๐ โ ((๐ ยท ๐) โ 0 โ (๐ โ 0 โง ๐ โ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 โ wi 4 โ wb 205 โง wa 395 โจ wo 844 = wceq 1533 โ wcel 2098 โ wne 2932 โcfv 6533 (class class class)co 7401 Basecbs 17143 .rcmulr 17197 0gc0g 17384 DivRingcdr 20577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-drng 20579 |
This theorem is referenced by: orngmullt 32893 lcfrlem31 40934 drnginvmuld 41592 |
Copyright terms: Public domain | W3C validator |