Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem53 Structured version   Visualization version   GIF version

Theorem stoweidlem53 44704
Description: This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 of [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ 𝑝 ≤ 1, p_(t0) = 0, and 0 < 𝑝 on 𝑇𝑈. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem53.1 𝑡𝑈
stoweidlem53.2 𝑡𝜑
stoweidlem53.3 𝐾 = (topGen‘ran (,))
stoweidlem53.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem53.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem53.6 𝑇 = 𝐽
stoweidlem53.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem53.8 (𝜑𝐽 ∈ Comp)
stoweidlem53.9 (𝜑𝐴𝐶)
stoweidlem53.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem53.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem53.14 (𝜑𝑈𝐽)
stoweidlem53.15 (𝜑 → (𝑇𝑈) ≠ ∅)
stoweidlem53.16 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem53 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑞,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑞,𝑡   𝑄,𝑓,𝑔,𝑞   𝑈,𝑓,𝑔,,𝑞   𝑓,𝑍,𝑔,,𝑞,𝑡   𝜑,𝑓,𝑔,,𝑞   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   ,𝐽,𝑡,𝑤   𝑞,𝑝,𝑡,𝑇   𝐴,𝑝   𝑈,𝑝   𝑍,𝑝   𝐴,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑤,𝑄   𝑤,𝑈   𝜑,𝑤   𝑥,𝐴   𝑥,𝑄   𝑥,𝑈   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑝)   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑄(𝑡,,𝑟,𝑝)   𝑈(𝑡)   𝐽(𝑥,𝑓,𝑔,𝑟,𝑞,𝑝)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞,𝑝)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem53
Dummy variables 𝑖 𝑚 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem53.1 . . . 4 𝑡𝑈
2 stoweidlem53.2 . . . 4 𝑡𝜑
3 stoweidlem53.3 . . . 4 𝐾 = (topGen‘ran (,))
4 stoweidlem53.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
5 stoweidlem53.5 . . . 4 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
6 stoweidlem53.6 . . . 4 𝑇 = 𝐽
7 stoweidlem53.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
8 stoweidlem53.8 . . . 4 (𝜑𝐽 ∈ Comp)
9 stoweidlem53.9 . . . 4 (𝜑𝐴𝐶)
10 stoweidlem53.10 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
11 stoweidlem53.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem53.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
13 stoweidlem53.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
14 stoweidlem53.14 . . . 4 (𝜑𝑈𝐽)
15 stoweidlem53.16 . . . 4 (𝜑𝑍𝑈)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem50 44701 . . 3 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
17 nfv 1918 . . . . . 6 𝑡 𝑢 ∈ Fin
18 nfcv 2904 . . . . . . 7 𝑡𝑢
19 nfv 1918 . . . . . . . . . . . . 13 𝑡(𝑍) = 0
20 nfra1 3282 . . . . . . . . . . . . 13 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
2119, 20nfan 1903 . . . . . . . . . . . 12 𝑡((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))
22 nfcv 2904 . . . . . . . . . . . 12 𝑡𝐴
2321, 22nfrabw 3469 . . . . . . . . . . 11 𝑡{𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
244, 23nfcxfr 2902 . . . . . . . . . 10 𝑡𝑄
25 nfrab1 3452 . . . . . . . . . . 11 𝑡{𝑡𝑇 ∣ 0 < (𝑡)}
2625nfeq2 2921 . . . . . . . . . 10 𝑡 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
2724, 26nfrexw 3311 . . . . . . . . 9 𝑡𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
28 nfcv 2904 . . . . . . . . 9 𝑡𝐽
2927, 28nfrabw 3469 . . . . . . . 8 𝑡{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
305, 29nfcxfr 2902 . . . . . . 7 𝑡𝑊
3118, 30nfss 3973 . . . . . 6 𝑡 𝑢𝑊
32 nfcv 2904 . . . . . . . 8 𝑡𝑇
3332, 1nfdif 4124 . . . . . . 7 𝑡(𝑇𝑈)
34 nfcv 2904 . . . . . . 7 𝑡 𝑢
3533, 34nfss 3973 . . . . . 6 𝑡(𝑇𝑈) ⊆ 𝑢
3617, 31, 35nf3an 1905 . . . . 5 𝑡(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
372, 36nfan 1903 . . . 4 𝑡(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
38 nfv 1918 . . . . 5 𝑤𝜑
39 nfv 1918 . . . . . 6 𝑤 𝑢 ∈ Fin
40 nfcv 2904 . . . . . . 7 𝑤𝑢
41 nfrab1 3452 . . . . . . . 8 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
425, 41nfcxfr 2902 . . . . . . 7 𝑤𝑊
4340, 42nfss 3973 . . . . . 6 𝑤 𝑢𝑊
44 nfv 1918 . . . . . 6 𝑤(𝑇𝑈) ⊆ 𝑢
4539, 43, 44nf3an 1905 . . . . 5 𝑤(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
4638, 45nfan 1903 . . . 4 𝑤(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
47 nfv 1918 . . . . 5 𝜑
48 nfv 1918 . . . . . 6 𝑢 ∈ Fin
49 nfcv 2904 . . . . . . 7 𝑢
50 nfre1 3283 . . . . . . . . 9 𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
51 nfcv 2904 . . . . . . . . 9 𝐽
5250, 51nfrabw 3469 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
535, 52nfcxfr 2902 . . . . . . 7 𝑊
5449, 53nfss 3973 . . . . . 6 𝑢𝑊
55 nfv 1918 . . . . . 6 (𝑇𝑈) ⊆ 𝑢
5648, 54, 55nf3an 1905 . . . . 5 (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
5747, 56nfan 1903 . . . 4 (𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
58 eqid 2733 . . . 4 (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
59 cmptop 22881 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
608, 59syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
61 retop 24260 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
623, 61eqeltri 2830 . . . . . . 7 𝐾 ∈ Top
63 cnfex 43645 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
6460, 62, 63sylancl 587 . . . . . 6 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
659, 7sseqtrdi 4031 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
6664, 65ssexd 5323 . . . . 5 (𝜑𝐴 ∈ V)
6766adantr 482 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝐴 ∈ V)
68 simpr1 1195 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
69 simpr2 1196 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
70 simpr3 1197 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
71 stoweidlem53.15 . . . . 5 (𝜑 → (𝑇𝑈) ≠ ∅)
7271adantr 482 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ≠ ∅)
7337, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72stoweidlem35 44686 . . 3 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
7416, 73exlimddv 1939 . 2 (𝜑 → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
75 nfv 1918 . . . . . 6 𝑖𝜑
76 nfv 1918 . . . . . . 7 𝑖 𝑚 ∈ ℕ
77 nfv 1918 . . . . . . . 8 𝑖 𝑞:(1...𝑚)⟶𝑄
78 nfcv 2904 . . . . . . . . 9 𝑖(𝑇𝑈)
79 nfre1 3283 . . . . . . . . 9 𝑖𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8078, 79nfralw 3309 . . . . . . . 8 𝑖𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8177, 80nfan 1903 . . . . . . 7 𝑖(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
8276, 81nfan 1903 . . . . . 6 𝑖(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
8375, 82nfan 1903 . . . . 5 𝑖(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
84 nfv 1918 . . . . . . 7 𝑡 𝑚 ∈ ℕ
85 nfcv 2904 . . . . . . . . 9 𝑡𝑞
86 nfcv 2904 . . . . . . . . 9 𝑡(1...𝑚)
8785, 86, 24nff 6710 . . . . . . . 8 𝑡 𝑞:(1...𝑚)⟶𝑄
88 nfra1 3282 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8987, 88nfan 1903 . . . . . . 7 𝑡(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9084, 89nfan 1903 . . . . . 6 𝑡(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
912, 90nfan 1903 . . . . 5 𝑡(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
92 eqid 2733 . . . . 5 (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡))) = (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡)))
93 simprl 770 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑚 ∈ ℕ)
94 simprrl 780 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑞:(1...𝑚)⟶𝑄)
95 simprrr 781 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9665adantr 482 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝐴 ⊆ (𝐽 Cn 𝐾))
97103adant1r 1178 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
98113adant1r 1178 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9912adantlr 714 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
100 elssuni 4940 . . . . . . . . 9 (𝑈𝐽𝑈 𝐽)
101100, 6sseqtrrdi 4032 . . . . . . . 8 (𝑈𝐽𝑈𝑇)
10214, 101syl 17 . . . . . . 7 (𝜑𝑈𝑇)
103102, 15sseldd 3982 . . . . . 6 (𝜑𝑍𝑇)
104103adantr 482 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑍𝑇)
10583, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104stoweidlem44 44695 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
106105ex 414 . . 3 (𝜑 → ((𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
107106exlimdvv 1938 . 2 (𝜑 → (∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
10874, 107mpd 15 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wnf 1786  wcel 2107  wnfc 2884  wne 2941  wral 3062  wrex 3071  {crab 3433  Vcvv 3475  cdif 3944  wss 3947  c0 4321   cuni 4907   class class class wbr 5147  cmpt 5230  ran crn 5676  wf 6536  cfv 6540  (class class class)co 7404  Fincfn 8935  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   < clt 11244  cle 11245   / cdiv 11867  cn 12208  (,)cioo 13320  ...cfz 13480  Σcsu 15628  topGenctg 17379  Topctop 22377   Cn ccn 22710  Compccmp 22872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19643  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-cn 22713  df-cnp 22714  df-cmp 22873  df-tx 23048  df-hmeo 23241  df-xms 23808  df-ms 23809  df-tms 23810
This theorem is referenced by:  stoweidlem55  44706
  Copyright terms: Public domain W3C validator