Step | Hyp | Ref
| Expression |
1 | | stoweidlem53.1 |
. . . 4
⊢
Ⅎ𝑡𝑈 |
2 | | stoweidlem53.2 |
. . . 4
⊢
Ⅎ𝑡𝜑 |
3 | | stoweidlem53.3 |
. . . 4
⊢ 𝐾 = (topGen‘ran
(,)) |
4 | | stoweidlem53.4 |
. . . 4
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
5 | | stoweidlem53.5 |
. . . 4
⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} |
6 | | stoweidlem53.6 |
. . . 4
⊢ 𝑇 = ∪
𝐽 |
7 | | stoweidlem53.7 |
. . . 4
⊢ 𝐶 = (𝐽 Cn 𝐾) |
8 | | stoweidlem53.8 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Comp) |
9 | | stoweidlem53.9 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
10 | | stoweidlem53.10 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
11 | | stoweidlem53.11 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
12 | | stoweidlem53.12 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
13 | | stoweidlem53.13 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
14 | | stoweidlem53.14 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
15 | | stoweidlem53.16 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | stoweidlem50 43481 |
. . 3
⊢ (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) |
17 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑡 𝑢 ∈ Fin |
18 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡𝑢 |
19 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡(ℎ‘𝑍) = 0 |
20 | | nfra1 3142 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) |
21 | 19, 20 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) |
22 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝐴 |
23 | 21, 22 | nfrabw 3311 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡{ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
24 | 4, 23 | nfcxfr 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑡𝑄 |
25 | | nfrab1 3310 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡{𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} |
26 | 25 | nfeq2 2923 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} |
27 | 24, 26 | nfrex 3237 |
. . . . . . . . 9
⊢
Ⅎ𝑡∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} |
28 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝐽 |
29 | 27, 28 | nfrabw 3311 |
. . . . . . . 8
⊢
Ⅎ𝑡{𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} |
30 | 5, 29 | nfcxfr 2904 |
. . . . . . 7
⊢
Ⅎ𝑡𝑊 |
31 | 18, 30 | nfss 3909 |
. . . . . 6
⊢
Ⅎ𝑡 𝑢 ⊆ 𝑊 |
32 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑡𝑇 |
33 | 32, 1 | nfdif 4056 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑇 ∖ 𝑈) |
34 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡∪ 𝑢 |
35 | 33, 34 | nfss 3909 |
. . . . . 6
⊢
Ⅎ𝑡(𝑇 ∖ 𝑈) ⊆ ∪ 𝑢 |
36 | 17, 31, 35 | nf3an 1905 |
. . . . 5
⊢
Ⅎ𝑡(𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢) |
37 | 2, 36 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑡(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) |
38 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑤𝜑 |
39 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑤 𝑢 ∈ Fin |
40 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑤𝑢 |
41 | | nfrab1 3310 |
. . . . . . . 8
⊢
Ⅎ𝑤{𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} |
42 | 5, 41 | nfcxfr 2904 |
. . . . . . 7
⊢
Ⅎ𝑤𝑊 |
43 | 40, 42 | nfss 3909 |
. . . . . 6
⊢
Ⅎ𝑤 𝑢 ⊆ 𝑊 |
44 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑤(𝑇 ∖ 𝑈) ⊆ ∪ 𝑢 |
45 | 39, 43, 44 | nf3an 1905 |
. . . . 5
⊢
Ⅎ𝑤(𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢) |
46 | 38, 45 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑤(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) |
47 | | nfv 1918 |
. . . . 5
⊢
Ⅎℎ𝜑 |
48 | | nfv 1918 |
. . . . . 6
⊢
Ⅎℎ 𝑢 ∈ Fin |
49 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎℎ𝑢 |
50 | | nfre1 3234 |
. . . . . . . . 9
⊢
Ⅎℎ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} |
51 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎℎ𝐽 |
52 | 50, 51 | nfrabw 3311 |
. . . . . . . 8
⊢
Ⅎℎ{𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} |
53 | 5, 52 | nfcxfr 2904 |
. . . . . . 7
⊢
Ⅎℎ𝑊 |
54 | 49, 53 | nfss 3909 |
. . . . . 6
⊢
Ⅎℎ 𝑢 ⊆ 𝑊 |
55 | | nfv 1918 |
. . . . . 6
⊢
Ⅎℎ(𝑇 ∖ 𝑈) ⊆ ∪ 𝑢 |
56 | 48, 54, 55 | nf3an 1905 |
. . . . 5
⊢
Ⅎℎ(𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢) |
57 | 47, 56 | nfan 1903 |
. . . 4
⊢
Ⅎℎ(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) |
58 | | eqid 2738 |
. . . 4
⊢ (𝑤 ∈ 𝑢 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) = (𝑤 ∈ 𝑢 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
59 | | cmptop 22454 |
. . . . . . . 8
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
60 | 8, 59 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
61 | | retop 23831 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ Top |
62 | 3, 61 | eqeltri 2835 |
. . . . . . 7
⊢ 𝐾 ∈ Top |
63 | | cnfex 42460 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
64 | 60, 62, 63 | sylancl 585 |
. . . . . 6
⊢ (𝜑 → (𝐽 Cn 𝐾) ∈ V) |
65 | 9, 7 | sseqtrdi 3967 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) |
66 | 64, 65 | ssexd 5243 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
67 | 66 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) → 𝐴 ∈ V) |
68 | | simpr1 1192 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) → 𝑢 ∈ Fin) |
69 | | simpr2 1193 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) → 𝑢 ⊆ 𝑊) |
70 | | simpr3 1194 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢) |
71 | | stoweidlem53.15 |
. . . . 5
⊢ (𝜑 → (𝑇 ∖ 𝑈) ≠ ∅) |
72 | 71 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) → (𝑇 ∖ 𝑈) ≠ ∅) |
73 | 37, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72 | stoweidlem35 43466 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) → ∃𝑚∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) |
74 | 16, 73 | exlimddv 1939 |
. 2
⊢ (𝜑 → ∃𝑚∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) |
75 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑖𝜑 |
76 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑖 𝑚 ∈ ℕ |
77 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑖 𝑞:(1...𝑚)⟶𝑄 |
78 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑇 ∖ 𝑈) |
79 | | nfre1 3234 |
. . . . . . . . 9
⊢
Ⅎ𝑖∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡) |
80 | 78, 79 | nfralw 3149 |
. . . . . . . 8
⊢
Ⅎ𝑖∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡) |
81 | 77, 80 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑖(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)) |
82 | 76, 81 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑖(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡))) |
83 | 75, 82 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑖(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) |
84 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑡 𝑚 ∈ ℕ |
85 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑞 |
86 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑡(1...𝑚) |
87 | 85, 86, 24 | nff 6580 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑞:(1...𝑚)⟶𝑄 |
88 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡) |
89 | 87, 88 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)) |
90 | 84, 89 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑡(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡))) |
91 | 2, 90 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑡(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) |
92 | | eqid 2738 |
. . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞‘𝑦)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞‘𝑦)‘𝑡))) |
93 | | simprl 767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) → 𝑚 ∈ ℕ) |
94 | | simprrl 777 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) → 𝑞:(1...𝑚)⟶𝑄) |
95 | | simprrr 778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)) |
96 | 65 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) → 𝐴 ⊆ (𝐽 Cn 𝐾)) |
97 | 10 | 3adant1r 1175 |
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
98 | 11 | 3adant1r 1175 |
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
99 | 12 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
100 | | elssuni 4868 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) |
101 | 100, 6 | sseqtrrdi 3968 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ 𝑇) |
102 | 14, 101 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ 𝑇) |
103 | 102, 15 | sseldd 3918 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
104 | 103 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) → 𝑍 ∈ 𝑇) |
105 | 83, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104 | stoweidlem44 43475 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) |
106 | 105 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡))) → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) |
107 | 106 | exlimdvv 1938 |
. 2
⊢ (𝜑 → (∃𝑚∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡))) → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) |
108 | 74, 107 | mpd 15 |
1
⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) |