Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem53 Structured version   Visualization version   GIF version

Theorem stoweidlem53 40910
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem53.1 𝑡𝑈
stoweidlem53.2 𝑡𝜑
stoweidlem53.3 𝐾 = (topGen‘ran (,))
stoweidlem53.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem53.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem53.6 𝑇 = 𝐽
stoweidlem53.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem53.8 (𝜑𝐽 ∈ Comp)
stoweidlem53.9 (𝜑𝐴𝐶)
stoweidlem53.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem53.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem53.14 (𝜑𝑈𝐽)
stoweidlem53.15 (𝜑 → (𝑇𝑈) ≠ ∅)
stoweidlem53.16 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem53 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑞,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑞,𝑡   𝑄,𝑓,𝑔,𝑞   𝑈,𝑓,𝑔,,𝑞   𝑓,𝑍,𝑔,,𝑞,𝑡   𝜑,𝑓,𝑔,,𝑞   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   ,𝐽,𝑡,𝑤   𝑞,𝑝,𝑡,𝑇   𝐴,𝑝   𝑈,𝑝   𝑍,𝑝   𝐴,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑤,𝑄   𝑤,𝑈   𝜑,𝑤   𝑥,𝐴   𝑥,𝑄   𝑥,𝑈   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑝)   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑄(𝑡,,𝑟,𝑝)   𝑈(𝑡)   𝐽(𝑥,𝑓,𝑔,𝑟,𝑞,𝑝)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞,𝑝)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem53
Dummy variables 𝑖 𝑚 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem53.1 . . . 4 𝑡𝑈
2 stoweidlem53.2 . . . 4 𝑡𝜑
3 stoweidlem53.3 . . . 4 𝐾 = (topGen‘ran (,))
4 stoweidlem53.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
5 stoweidlem53.5 . . . 4 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
6 stoweidlem53.6 . . . 4 𝑇 = 𝐽
7 stoweidlem53.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
8 stoweidlem53.8 . . . 4 (𝜑𝐽 ∈ Comp)
9 stoweidlem53.9 . . . 4 (𝜑𝐴𝐶)
10 stoweidlem53.10 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
11 stoweidlem53.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem53.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
13 stoweidlem53.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
14 stoweidlem53.14 . . . 4 (𝜑𝑈𝐽)
15 stoweidlem53.16 . . . 4 (𝜑𝑍𝑈)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem50 40907 . . 3 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
17 nfv 2009 . . . . . 6 𝑡 𝑢 ∈ Fin
18 nfcv 2907 . . . . . . 7 𝑡𝑢
19 nfv 2009 . . . . . . . . . . . . 13 𝑡(𝑍) = 0
20 nfra1 3088 . . . . . . . . . . . . 13 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
2119, 20nfan 1998 . . . . . . . . . . . 12 𝑡((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))
22 nfcv 2907 . . . . . . . . . . . 12 𝑡𝐴
2321, 22nfrab 3271 . . . . . . . . . . 11 𝑡{𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
244, 23nfcxfr 2905 . . . . . . . . . 10 𝑡𝑄
25 nfrab1 3270 . . . . . . . . . . 11 𝑡{𝑡𝑇 ∣ 0 < (𝑡)}
2625nfeq2 2923 . . . . . . . . . 10 𝑡 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
2724, 26nfrex 3153 . . . . . . . . 9 𝑡𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
28 nfcv 2907 . . . . . . . . 9 𝑡𝐽
2927, 28nfrab 3271 . . . . . . . 8 𝑡{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
305, 29nfcxfr 2905 . . . . . . 7 𝑡𝑊
3118, 30nfss 3756 . . . . . 6 𝑡 𝑢𝑊
32 nfcv 2907 . . . . . . . 8 𝑡𝑇
3332, 1nfdif 3895 . . . . . . 7 𝑡(𝑇𝑈)
34 nfcv 2907 . . . . . . 7 𝑡 𝑢
3533, 34nfss 3756 . . . . . 6 𝑡(𝑇𝑈) ⊆ 𝑢
3617, 31, 35nf3an 2000 . . . . 5 𝑡(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
372, 36nfan 1998 . . . 4 𝑡(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
38 nfv 2009 . . . . 5 𝑤𝜑
39 nfv 2009 . . . . . 6 𝑤 𝑢 ∈ Fin
40 nfcv 2907 . . . . . . 7 𝑤𝑢
41 nfrab1 3270 . . . . . . . 8 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
425, 41nfcxfr 2905 . . . . . . 7 𝑤𝑊
4340, 42nfss 3756 . . . . . 6 𝑤 𝑢𝑊
44 nfv 2009 . . . . . 6 𝑤(𝑇𝑈) ⊆ 𝑢
4539, 43, 44nf3an 2000 . . . . 5 𝑤(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
4638, 45nfan 1998 . . . 4 𝑤(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
47 nfv 2009 . . . . 5 𝜑
48 nfv 2009 . . . . . 6 𝑢 ∈ Fin
49 nfcv 2907 . . . . . . 7 𝑢
50 nfre1 3151 . . . . . . . . 9 𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
51 nfcv 2907 . . . . . . . . 9 𝐽
5250, 51nfrab 3271 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
535, 52nfcxfr 2905 . . . . . . 7 𝑊
5449, 53nfss 3756 . . . . . 6 𝑢𝑊
55 nfv 2009 . . . . . 6 (𝑇𝑈) ⊆ 𝑢
5648, 54, 55nf3an 2000 . . . . 5 (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
5747, 56nfan 1998 . . . 4 (𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
58 eqid 2765 . . . 4 (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
59 cmptop 21481 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
608, 59syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
61 retop 22847 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
623, 61eqeltri 2840 . . . . . . 7 𝐾 ∈ Top
63 cnfex 39842 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
6460, 62, 63sylancl 580 . . . . . 6 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
659, 7syl6sseq 3813 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
6664, 65ssexd 4968 . . . . 5 (𝜑𝐴 ∈ V)
6766adantr 472 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝐴 ∈ V)
68 simpr1 1248 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
69 simpr2 1250 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
70 simpr3 1252 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
71 stoweidlem53.15 . . . . 5 (𝜑 → (𝑇𝑈) ≠ ∅)
7271adantr 472 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ≠ ∅)
7337, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72stoweidlem35 40892 . . 3 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
7416, 73exlimddv 2030 . 2 (𝜑 → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
75 nfv 2009 . . . . . 6 𝑖𝜑
76 nfv 2009 . . . . . . 7 𝑖 𝑚 ∈ ℕ
77 nfv 2009 . . . . . . . 8 𝑖 𝑞:(1...𝑚)⟶𝑄
78 nfcv 2907 . . . . . . . . 9 𝑖(𝑇𝑈)
79 nfre1 3151 . . . . . . . . 9 𝑖𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8078, 79nfral 3092 . . . . . . . 8 𝑖𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8177, 80nfan 1998 . . . . . . 7 𝑖(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
8276, 81nfan 1998 . . . . . 6 𝑖(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
8375, 82nfan 1998 . . . . 5 𝑖(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
84 nfv 2009 . . . . . . 7 𝑡 𝑚 ∈ ℕ
85 nfcv 2907 . . . . . . . . 9 𝑡𝑞
86 nfcv 2907 . . . . . . . . 9 𝑡(1...𝑚)
8785, 86, 24nff 6221 . . . . . . . 8 𝑡 𝑞:(1...𝑚)⟶𝑄
88 nfra1 3088 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8987, 88nfan 1998 . . . . . . 7 𝑡(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9084, 89nfan 1998 . . . . . 6 𝑡(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
912, 90nfan 1998 . . . . 5 𝑡(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
92 eqid 2765 . . . . 5 (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡))) = (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡)))
93 simprl 787 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑚 ∈ ℕ)
94 simprrl 799 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑞:(1...𝑚)⟶𝑄)
95 simprrr 800 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9665adantr 472 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝐴 ⊆ (𝐽 Cn 𝐾))
97103adant1r 1223 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
98113adant1r 1223 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9912adantlr 706 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
100 elssuni 4627 . . . . . . . . 9 (𝑈𝐽𝑈 𝐽)
101100, 6syl6sseqr 3814 . . . . . . . 8 (𝑈𝐽𝑈𝑇)
10214, 101syl 17 . . . . . . 7 (𝜑𝑈𝑇)
103102, 15sseldd 3764 . . . . . 6 (𝜑𝑍𝑇)
104103adantr 472 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑍𝑇)
10583, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104stoweidlem44 40901 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
106105ex 401 . . 3 (𝜑 → ((𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
107106exlimdvv 2029 . 2 (𝜑 → (∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
10874, 107mpd 15 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wnf 1878  wcel 2155  wnfc 2894  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cdif 3731  wss 3734  c0 4081   cuni 4596   class class class wbr 4811  cmpt 4890  ran crn 5280  wf 6066  cfv 6070  (class class class)co 6844  Fincfn 8162  cr 10190  0cc0 10191  1c1 10192   + caddc 10194   · cmul 10196   < clt 10330  cle 10331   / cdiv 10940  cn 11276  (,)cioo 12380  ...cfz 12536  Σcsu 14704  topGenctg 16367  Topctop 20980   Cn ccn 21311  Compccmp 21472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-z 11627  df-dec 11744  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-sum 14705  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-rest 16352  df-topn 16353  df-0g 16371  df-gsum 16372  df-topgen 16373  df-pt 16374  df-prds 16377  df-xrs 16431  df-qtop 16436  df-imas 16437  df-xps 16439  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-mulg 17811  df-cntz 18016  df-cmn 18464  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-cnfld 20023  df-top 20981  df-topon 20998  df-topsp 21020  df-bases 21033  df-cld 21106  df-cn 21314  df-cnp 21315  df-cmp 21473  df-tx 21648  df-hmeo 21841  df-xms 22407  df-ms 22408  df-tms 22409
This theorem is referenced by:  stoweidlem55  40912
  Copyright terms: Public domain W3C validator