Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem53 Structured version   Visualization version   GIF version

Theorem stoweidlem53 42692
 Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem53.1 𝑡𝑈
stoweidlem53.2 𝑡𝜑
stoweidlem53.3 𝐾 = (topGen‘ran (,))
stoweidlem53.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem53.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem53.6 𝑇 = 𝐽
stoweidlem53.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem53.8 (𝜑𝐽 ∈ Comp)
stoweidlem53.9 (𝜑𝐴𝐶)
stoweidlem53.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem53.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem53.14 (𝜑𝑈𝐽)
stoweidlem53.15 (𝜑 → (𝑇𝑈) ≠ ∅)
stoweidlem53.16 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem53 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑞,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑞,𝑡   𝑄,𝑓,𝑔,𝑞   𝑈,𝑓,𝑔,,𝑞   𝑓,𝑍,𝑔,,𝑞,𝑡   𝜑,𝑓,𝑔,,𝑞   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   ,𝐽,𝑡,𝑤   𝑞,𝑝,𝑡,𝑇   𝐴,𝑝   𝑈,𝑝   𝑍,𝑝   𝐴,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑤,𝑄   𝑤,𝑈   𝜑,𝑤   𝑥,𝐴   𝑥,𝑄   𝑥,𝑈   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑝)   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑄(𝑡,,𝑟,𝑝)   𝑈(𝑡)   𝐽(𝑥,𝑓,𝑔,𝑟,𝑞,𝑝)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞,𝑝)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem53
Dummy variables 𝑖 𝑚 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem53.1 . . . 4 𝑡𝑈
2 stoweidlem53.2 . . . 4 𝑡𝜑
3 stoweidlem53.3 . . . 4 𝐾 = (topGen‘ran (,))
4 stoweidlem53.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
5 stoweidlem53.5 . . . 4 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
6 stoweidlem53.6 . . . 4 𝑇 = 𝐽
7 stoweidlem53.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
8 stoweidlem53.8 . . . 4 (𝜑𝐽 ∈ Comp)
9 stoweidlem53.9 . . . 4 (𝜑𝐴𝐶)
10 stoweidlem53.10 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
11 stoweidlem53.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem53.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
13 stoweidlem53.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
14 stoweidlem53.14 . . . 4 (𝜑𝑈𝐽)
15 stoweidlem53.16 . . . 4 (𝜑𝑍𝑈)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem50 42689 . . 3 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
17 nfv 1915 . . . . . 6 𝑡 𝑢 ∈ Fin
18 nfcv 2958 . . . . . . 7 𝑡𝑢
19 nfv 1915 . . . . . . . . . . . . 13 𝑡(𝑍) = 0
20 nfra1 3186 . . . . . . . . . . . . 13 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
2119, 20nfan 1900 . . . . . . . . . . . 12 𝑡((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))
22 nfcv 2958 . . . . . . . . . . . 12 𝑡𝐴
2321, 22nfrabw 3341 . . . . . . . . . . 11 𝑡{𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
244, 23nfcxfr 2956 . . . . . . . . . 10 𝑡𝑄
25 nfrab1 3340 . . . . . . . . . . 11 𝑡{𝑡𝑇 ∣ 0 < (𝑡)}
2625nfeq2 2975 . . . . . . . . . 10 𝑡 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
2724, 26nfrex 3271 . . . . . . . . 9 𝑡𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
28 nfcv 2958 . . . . . . . . 9 𝑡𝐽
2927, 28nfrabw 3341 . . . . . . . 8 𝑡{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
305, 29nfcxfr 2956 . . . . . . 7 𝑡𝑊
3118, 30nfss 3910 . . . . . 6 𝑡 𝑢𝑊
32 nfcv 2958 . . . . . . . 8 𝑡𝑇
3332, 1nfdif 4056 . . . . . . 7 𝑡(𝑇𝑈)
34 nfcv 2958 . . . . . . 7 𝑡 𝑢
3533, 34nfss 3910 . . . . . 6 𝑡(𝑇𝑈) ⊆ 𝑢
3617, 31, 35nf3an 1902 . . . . 5 𝑡(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
372, 36nfan 1900 . . . 4 𝑡(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
38 nfv 1915 . . . . 5 𝑤𝜑
39 nfv 1915 . . . . . 6 𝑤 𝑢 ∈ Fin
40 nfcv 2958 . . . . . . 7 𝑤𝑢
41 nfrab1 3340 . . . . . . . 8 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
425, 41nfcxfr 2956 . . . . . . 7 𝑤𝑊
4340, 42nfss 3910 . . . . . 6 𝑤 𝑢𝑊
44 nfv 1915 . . . . . 6 𝑤(𝑇𝑈) ⊆ 𝑢
4539, 43, 44nf3an 1902 . . . . 5 𝑤(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
4638, 45nfan 1900 . . . 4 𝑤(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
47 nfv 1915 . . . . 5 𝜑
48 nfv 1915 . . . . . 6 𝑢 ∈ Fin
49 nfcv 2958 . . . . . . 7 𝑢
50 nfre1 3268 . . . . . . . . 9 𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
51 nfcv 2958 . . . . . . . . 9 𝐽
5250, 51nfrabw 3341 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
535, 52nfcxfr 2956 . . . . . . 7 𝑊
5449, 53nfss 3910 . . . . . 6 𝑢𝑊
55 nfv 1915 . . . . . 6 (𝑇𝑈) ⊆ 𝑢
5648, 54, 55nf3an 1902 . . . . 5 (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
5747, 56nfan 1900 . . . 4 (𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
58 eqid 2801 . . . 4 (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
59 cmptop 22004 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
608, 59syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
61 retop 23371 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
623, 61eqeltri 2889 . . . . . . 7 𝐾 ∈ Top
63 cnfex 41654 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
6460, 62, 63sylancl 589 . . . . . 6 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
659, 7sseqtrdi 3968 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
6664, 65ssexd 5195 . . . . 5 (𝜑𝐴 ∈ V)
6766adantr 484 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝐴 ∈ V)
68 simpr1 1191 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
69 simpr2 1192 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
70 simpr3 1193 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
71 stoweidlem53.15 . . . . 5 (𝜑 → (𝑇𝑈) ≠ ∅)
7271adantr 484 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ≠ ∅)
7337, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72stoweidlem35 42674 . . 3 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
7416, 73exlimddv 1936 . 2 (𝜑 → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
75 nfv 1915 . . . . . 6 𝑖𝜑
76 nfv 1915 . . . . . . 7 𝑖 𝑚 ∈ ℕ
77 nfv 1915 . . . . . . . 8 𝑖 𝑞:(1...𝑚)⟶𝑄
78 nfcv 2958 . . . . . . . . 9 𝑖(𝑇𝑈)
79 nfre1 3268 . . . . . . . . 9 𝑖𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8078, 79nfralw 3192 . . . . . . . 8 𝑖𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8177, 80nfan 1900 . . . . . . 7 𝑖(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
8276, 81nfan 1900 . . . . . 6 𝑖(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
8375, 82nfan 1900 . . . . 5 𝑖(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
84 nfv 1915 . . . . . . 7 𝑡 𝑚 ∈ ℕ
85 nfcv 2958 . . . . . . . . 9 𝑡𝑞
86 nfcv 2958 . . . . . . . . 9 𝑡(1...𝑚)
8785, 86, 24nff 6487 . . . . . . . 8 𝑡 𝑞:(1...𝑚)⟶𝑄
88 nfra1 3186 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8987, 88nfan 1900 . . . . . . 7 𝑡(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9084, 89nfan 1900 . . . . . 6 𝑡(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
912, 90nfan 1900 . . . . 5 𝑡(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
92 eqid 2801 . . . . 5 (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡))) = (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡)))
93 simprl 770 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑚 ∈ ℕ)
94 simprrl 780 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑞:(1...𝑚)⟶𝑄)
95 simprrr 781 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9665adantr 484 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝐴 ⊆ (𝐽 Cn 𝐾))
97103adant1r 1174 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
98113adant1r 1174 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9912adantlr 714 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
100 elssuni 4833 . . . . . . . . 9 (𝑈𝐽𝑈 𝐽)
101100, 6sseqtrrdi 3969 . . . . . . . 8 (𝑈𝐽𝑈𝑇)
10214, 101syl 17 . . . . . . 7 (𝜑𝑈𝑇)
103102, 15sseldd 3919 . . . . . 6 (𝜑𝑍𝑇)
104103adantr 484 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑍𝑇)
10583, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104stoweidlem44 42683 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
106105ex 416 . . 3 (𝜑 → ((𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
107106exlimdvv 1935 . 2 (𝜑 → (∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
10874, 107mpd 15 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781  Ⅎwnf 1785   ∈ wcel 2112  Ⅎwnfc 2939   ≠ wne 2990  ∀wral 3109  ∃wrex 3110  {crab 3113  Vcvv 3444   ∖ cdif 3881   ⊆ wss 3884  ∅c0 4246  ∪ cuni 4803   class class class wbr 5033   ↦ cmpt 5113  ran crn 5524  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  Fincfn 8496  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668   ≤ cle 10669   / cdiv 11290  ℕcn 11629  (,)cioo 12730  ...cfz 12889  Σcsu 15038  topGenctg 16707  Topctop 21502   Cn ccn 21833  Compccmp 21995 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-cn 21836  df-cnp 21837  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-xms 22931  df-ms 22932  df-tms 22933 This theorem is referenced by:  stoweidlem55  42694
 Copyright terms: Public domain W3C validator