Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem53 Structured version   Visualization version   GIF version

Theorem stoweidlem53 43594
Description: This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 of [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ 𝑝 ≤ 1, p_(t0) = 0, and 0 < 𝑝 on 𝑇𝑈. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem53.1 𝑡𝑈
stoweidlem53.2 𝑡𝜑
stoweidlem53.3 𝐾 = (topGen‘ran (,))
stoweidlem53.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem53.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem53.6 𝑇 = 𝐽
stoweidlem53.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem53.8 (𝜑𝐽 ∈ Comp)
stoweidlem53.9 (𝜑𝐴𝐶)
stoweidlem53.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem53.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem53.14 (𝜑𝑈𝐽)
stoweidlem53.15 (𝜑 → (𝑇𝑈) ≠ ∅)
stoweidlem53.16 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem53 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑞,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑞,𝑡   𝑄,𝑓,𝑔,𝑞   𝑈,𝑓,𝑔,,𝑞   𝑓,𝑍,𝑔,,𝑞,𝑡   𝜑,𝑓,𝑔,,𝑞   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   ,𝐽,𝑡,𝑤   𝑞,𝑝,𝑡,𝑇   𝐴,𝑝   𝑈,𝑝   𝑍,𝑝   𝐴,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑤,𝑄   𝑤,𝑈   𝜑,𝑤   𝑥,𝐴   𝑥,𝑄   𝑥,𝑈   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑝)   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑄(𝑡,,𝑟,𝑝)   𝑈(𝑡)   𝐽(𝑥,𝑓,𝑔,𝑟,𝑞,𝑝)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞,𝑝)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem53
Dummy variables 𝑖 𝑚 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem53.1 . . . 4 𝑡𝑈
2 stoweidlem53.2 . . . 4 𝑡𝜑
3 stoweidlem53.3 . . . 4 𝐾 = (topGen‘ran (,))
4 stoweidlem53.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
5 stoweidlem53.5 . . . 4 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
6 stoweidlem53.6 . . . 4 𝑇 = 𝐽
7 stoweidlem53.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
8 stoweidlem53.8 . . . 4 (𝜑𝐽 ∈ Comp)
9 stoweidlem53.9 . . . 4 (𝜑𝐴𝐶)
10 stoweidlem53.10 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
11 stoweidlem53.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem53.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
13 stoweidlem53.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
14 stoweidlem53.14 . . . 4 (𝜑𝑈𝐽)
15 stoweidlem53.16 . . . 4 (𝜑𝑍𝑈)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem50 43591 . . 3 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
17 nfv 1917 . . . . . 6 𝑡 𝑢 ∈ Fin
18 nfcv 2907 . . . . . . 7 𝑡𝑢
19 nfv 1917 . . . . . . . . . . . . 13 𝑡(𝑍) = 0
20 nfra1 3144 . . . . . . . . . . . . 13 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
2119, 20nfan 1902 . . . . . . . . . . . 12 𝑡((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))
22 nfcv 2907 . . . . . . . . . . . 12 𝑡𝐴
2321, 22nfrabw 3318 . . . . . . . . . . 11 𝑡{𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
244, 23nfcxfr 2905 . . . . . . . . . 10 𝑡𝑄
25 nfrab1 3317 . . . . . . . . . . 11 𝑡{𝑡𝑇 ∣ 0 < (𝑡)}
2625nfeq2 2924 . . . . . . . . . 10 𝑡 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
2724, 26nfrex 3242 . . . . . . . . 9 𝑡𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
28 nfcv 2907 . . . . . . . . 9 𝑡𝐽
2927, 28nfrabw 3318 . . . . . . . 8 𝑡{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
305, 29nfcxfr 2905 . . . . . . 7 𝑡𝑊
3118, 30nfss 3913 . . . . . 6 𝑡 𝑢𝑊
32 nfcv 2907 . . . . . . . 8 𝑡𝑇
3332, 1nfdif 4060 . . . . . . 7 𝑡(𝑇𝑈)
34 nfcv 2907 . . . . . . 7 𝑡 𝑢
3533, 34nfss 3913 . . . . . 6 𝑡(𝑇𝑈) ⊆ 𝑢
3617, 31, 35nf3an 1904 . . . . 5 𝑡(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
372, 36nfan 1902 . . . 4 𝑡(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
38 nfv 1917 . . . . 5 𝑤𝜑
39 nfv 1917 . . . . . 6 𝑤 𝑢 ∈ Fin
40 nfcv 2907 . . . . . . 7 𝑤𝑢
41 nfrab1 3317 . . . . . . . 8 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
425, 41nfcxfr 2905 . . . . . . 7 𝑤𝑊
4340, 42nfss 3913 . . . . . 6 𝑤 𝑢𝑊
44 nfv 1917 . . . . . 6 𝑤(𝑇𝑈) ⊆ 𝑢
4539, 43, 44nf3an 1904 . . . . 5 𝑤(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
4638, 45nfan 1902 . . . 4 𝑤(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
47 nfv 1917 . . . . 5 𝜑
48 nfv 1917 . . . . . 6 𝑢 ∈ Fin
49 nfcv 2907 . . . . . . 7 𝑢
50 nfre1 3239 . . . . . . . . 9 𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
51 nfcv 2907 . . . . . . . . 9 𝐽
5250, 51nfrabw 3318 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
535, 52nfcxfr 2905 . . . . . . 7 𝑊
5449, 53nfss 3913 . . . . . 6 𝑢𝑊
55 nfv 1917 . . . . . 6 (𝑇𝑈) ⊆ 𝑢
5648, 54, 55nf3an 1904 . . . . 5 (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
5747, 56nfan 1902 . . . 4 (𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
58 eqid 2738 . . . 4 (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
59 cmptop 22546 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
608, 59syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
61 retop 23925 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
623, 61eqeltri 2835 . . . . . . 7 𝐾 ∈ Top
63 cnfex 42571 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
6460, 62, 63sylancl 586 . . . . . 6 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
659, 7sseqtrdi 3971 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
6664, 65ssexd 5248 . . . . 5 (𝜑𝐴 ∈ V)
6766adantr 481 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝐴 ∈ V)
68 simpr1 1193 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
69 simpr2 1194 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
70 simpr3 1195 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
71 stoweidlem53.15 . . . . 5 (𝜑 → (𝑇𝑈) ≠ ∅)
7271adantr 481 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ≠ ∅)
7337, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72stoweidlem35 43576 . . 3 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
7416, 73exlimddv 1938 . 2 (𝜑 → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
75 nfv 1917 . . . . . 6 𝑖𝜑
76 nfv 1917 . . . . . . 7 𝑖 𝑚 ∈ ℕ
77 nfv 1917 . . . . . . . 8 𝑖 𝑞:(1...𝑚)⟶𝑄
78 nfcv 2907 . . . . . . . . 9 𝑖(𝑇𝑈)
79 nfre1 3239 . . . . . . . . 9 𝑖𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8078, 79nfralw 3151 . . . . . . . 8 𝑖𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8177, 80nfan 1902 . . . . . . 7 𝑖(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
8276, 81nfan 1902 . . . . . 6 𝑖(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
8375, 82nfan 1902 . . . . 5 𝑖(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
84 nfv 1917 . . . . . . 7 𝑡 𝑚 ∈ ℕ
85 nfcv 2907 . . . . . . . . 9 𝑡𝑞
86 nfcv 2907 . . . . . . . . 9 𝑡(1...𝑚)
8785, 86, 24nff 6596 . . . . . . . 8 𝑡 𝑞:(1...𝑚)⟶𝑄
88 nfra1 3144 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8987, 88nfan 1902 . . . . . . 7 𝑡(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9084, 89nfan 1902 . . . . . 6 𝑡(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
912, 90nfan 1902 . . . . 5 𝑡(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
92 eqid 2738 . . . . 5 (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡))) = (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡)))
93 simprl 768 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑚 ∈ ℕ)
94 simprrl 778 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑞:(1...𝑚)⟶𝑄)
95 simprrr 779 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9665adantr 481 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝐴 ⊆ (𝐽 Cn 𝐾))
97103adant1r 1176 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
98113adant1r 1176 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9912adantlr 712 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
100 elssuni 4871 . . . . . . . . 9 (𝑈𝐽𝑈 𝐽)
101100, 6sseqtrrdi 3972 . . . . . . . 8 (𝑈𝐽𝑈𝑇)
10214, 101syl 17 . . . . . . 7 (𝜑𝑈𝑇)
103102, 15sseldd 3922 . . . . . 6 (𝜑𝑍𝑇)
104103adantr 481 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑍𝑇)
10583, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104stoweidlem44 43585 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
106105ex 413 . . 3 (𝜑 → ((𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
107106exlimdvv 1937 . 2 (𝜑 → (∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
10874, 107mpd 15 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wnf 1786  wcel 2106  wnfc 2887  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  c0 4256   cuni 4839   class class class wbr 5074  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  cn 11973  (,)cioo 13079  ...cfz 13239  Σcsu 15397  topGenctg 17148  Topctop 22042   Cn ccn 22375  Compccmp 22537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cn 22378  df-cnp 22379  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475
This theorem is referenced by:  stoweidlem55  43596
  Copyright terms: Public domain W3C validator