Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvbinom Structured version   Visualization version   GIF version

Theorem binomcxplemdvbinom 44348
Description: Lemma for binomcxp 44352. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 44350 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a nonnegated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemdvbinom ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Distinct variable groups:   𝑗,𝑘,𝜑   𝑘,𝑏,𝐶   𝐶,𝑗   𝐹,𝑏,𝑘   𝑆,𝑟   𝑟,𝑏
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemdvbinom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.d . . . . 5 𝐷 = (abs “ (0[,)𝑅))
2 nfcv 2902 . . . . . 6 𝑏abs
3 nfcv 2902 . . . . . . 7 𝑏0
4 nfcv 2902 . . . . . . 7 𝑏[,)
5 binomcxplem.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
6 nfcv 2902 . . . . . . . . . . . 12 𝑏 +
7 binomcxplem.s . . . . . . . . . . . . . 14 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
8 nfmpt1 5255 . . . . . . . . . . . . . 14 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
97, 8nfcxfr 2900 . . . . . . . . . . . . 13 𝑏𝑆
10 nfcv 2902 . . . . . . . . . . . . 13 𝑏𝑟
119, 10nffv 6916 . . . . . . . . . . . 12 𝑏(𝑆𝑟)
123, 6, 11nfseq 14048 . . . . . . . . . . 11 𝑏seq0( + , (𝑆𝑟))
1312nfel1 2919 . . . . . . . . . 10 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
14 nfcv 2902 . . . . . . . . . 10 𝑏
1513, 14nfrabw 3472 . . . . . . . . 9 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
16 nfcv 2902 . . . . . . . . 9 𝑏*
17 nfcv 2902 . . . . . . . . 9 𝑏 <
1815, 16, 17nfsup 9488 . . . . . . . 8 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
195, 18nfcxfr 2900 . . . . . . 7 𝑏𝑅
203, 4, 19nfov 7460 . . . . . 6 𝑏(0[,)𝑅)
212, 20nfima 6087 . . . . 5 𝑏(abs “ (0[,)𝑅))
221, 21nfcxfr 2900 . . . 4 𝑏𝐷
23 nfcv 2902 . . . 4 𝑦𝐷
24 nfcv 2902 . . . 4 𝑦((1 + 𝑏)↑𝑐-𝐶)
25 nfcv 2902 . . . 4 𝑏((1 + 𝑦)↑𝑐-𝐶)
26 oveq2 7438 . . . . 5 (𝑏 = 𝑦 → (1 + 𝑏) = (1 + 𝑦))
2726oveq1d 7445 . . . 4 (𝑏 = 𝑦 → ((1 + 𝑏)↑𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
2822, 23, 24, 25, 27cbvmptf 5256 . . 3 (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶)) = (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))
2928oveq2i 7441 . 2 (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶)))
30 cnelprrecn 11245 . . . . 5 ℂ ∈ {ℝ, ℂ}
3130a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
32 1cnd 11253 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 1 ∈ ℂ)
33 cnvimass 6101 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
341, 33eqsstri 4029 . . . . . . . . 9 𝐷 ⊆ dom abs
35 absf 15372 . . . . . . . . . 10 abs:ℂ⟶ℝ
3635fdmi 6747 . . . . . . . . 9 dom abs = ℂ
3734, 36sseqtri 4031 . . . . . . . 8 𝐷 ⊆ ℂ
3837a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐷 ⊆ ℂ)
3938sselda 3994 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
4032, 39addcld 11277 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ ℂ)
41 simpr 484 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
42 1cnd 11253 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℂ)
4339adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43pncan2d 11619 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) = 𝑦)
45 1red 11259 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℝ)
4641, 45resubcld 11688 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) ∈ ℝ)
4744, 46eqeltrrd 2839 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℝ)
48 1pneg1e0 12382 . . . . . . . . 9 (1 + -1) = 0
49 1red 11259 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
5049renegcld 11687 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 ∈ ℝ)
51 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
52 ffn 6736 . . . . . . . . . . . . . . . . . . . 20 (abs:ℂ⟶ℝ → abs Fn ℂ)
53 elpreima 7077 . . . . . . . . . . . . . . . . . . . 20 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅))))
5435, 52, 53mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅)))
5554simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (abs “ (0[,)𝑅)) → (abs‘𝑦) ∈ (0[,)𝑅))
5655, 1eleq2s 2856 . . . . . . . . . . . . . . . . 17 (𝑦𝐷 → (abs‘𝑦) ∈ (0[,)𝑅))
57 0re 11260 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
58 ssrab2 4089 . . . . . . . . . . . . . . . . . . . . 21 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
59 ressxr 11302 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℝ*
6058, 59sstri 4004 . . . . . . . . . . . . . . . . . . . 20 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
61 supxrcl 13353 . . . . . . . . . . . . . . . . . . . 20 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . 19 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
635, 62eqeltri 2834 . . . . . . . . . . . . . . . . . 18 𝑅 ∈ ℝ*
64 elico2 13447 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅)))
6557, 63, 64mp2an 692 . . . . . . . . . . . . . . . . 17 ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6656, 65sylib 218 . . . . . . . . . . . . . . . 16 (𝑦𝐷 → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6766simp3d 1143 . . . . . . . . . . . . . . 15 (𝑦𝐷 → (abs‘𝑦) < 𝑅)
6867adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 𝑅)
69 binomcxp.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
70 binomcxp.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
71 binomcxp.lt . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
72 binomcxp.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
73 binomcxplem.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
7469, 70, 71, 72, 73, 7, 5binomcxplemradcnv 44347 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
7574adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑅 = 1)
7668, 75breqtrd 5173 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 1)
7776adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (abs‘𝑦) < 1)
7851, 49absltd 15464 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (-1 < 𝑦𝑦 < 1)))
7977, 78mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (-1 < 𝑦𝑦 < 1))
8079simpld 494 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 < 𝑦)
8150, 51, 49, 80ltadd2dd 11417 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (1 + -1) < (1 + 𝑦))
8248, 81eqbrtrrid 5183 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 0 < (1 + 𝑦))
8347, 82syldan 591 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 0 < (1 + 𝑦))
8441, 83elrpd 13071 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ+)
8584ex 412 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+))
86 eqid 2734 . . . . . 6 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8786ellogdm 26695 . . . . 5 ((1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + 𝑦) ∈ ℂ ∧ ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+)))
8840, 85, 87sylanbrc 583 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)))
89 eldifi 4140 . . . . . 6 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) → 𝑥 ∈ ℂ)
9089adantl 481 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → 𝑥 ∈ ℂ)
9172adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
9291negcld 11604 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → -𝐶 ∈ ℂ)
9392adantr 480 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → -𝐶 ∈ ℂ)
9490, 93cxpcld 26764 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (𝑥𝑐-𝐶) ∈ ℂ)
95 ovexd 7465 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) ∈ V)
96 1cnd 11253 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
97 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9896, 97addcld 11277 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) ∈ ℂ)
99 c0ex 11252 . . . . . . . . 9 0 ∈ V
10099a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
101 1cnd 11253 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ∈ ℂ)
10231, 101dvmptc 26010 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
10331dvmptid 26009 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
10431, 96, 100, 102, 97, 96, 103dvmptadd 26012 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ (0 + 1)))
105 0p1e1 12385 . . . . . . . 8 (0 + 1) = 1
106105mpteq2i 5252 . . . . . . 7 (𝑥 ∈ ℂ ↦ (0 + 1)) = (𝑥 ∈ ℂ ↦ 1)
107104, 106eqtrdi 2790 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ 1))
108 fvex 6919 . . . . . . . 8 (TopOpen‘ℂfld) ∈ V
109 cnfldtps 24813 . . . . . . . . . 10 fld ∈ TopSp
110 cnfldbas 21385 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
111 eqid 2734 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
112110, 111tpsuni 22957 . . . . . . . . . 10 (ℂfld ∈ TopSp → ℂ = (TopOpen‘ℂfld))
113109, 112ax-mp 5 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
114113restid 17479 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ V → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
115108, 114ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
116115eqcomi 2743 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
117111cnfldtop 24819 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
118 eqid 2734 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
119118cnbl0 24809 . . . . . . . . . . 11 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅))
12063, 119ax-mp 5 . . . . . . . . . 10 (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅)
1211, 120eqtri 2762 . . . . . . . . 9 𝐷 = (0(ball‘(abs ∘ − ))𝑅)
122 cnxmet 24808 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
123 0cn 11250 . . . . . . . . . 10 0 ∈ ℂ
124111cnfldtopn 24817 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
125124blopn 24528 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
126122, 123, 63, 125mp3an 1460 . . . . . . . . 9 (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld)
127121, 126eqeltri 2834 . . . . . . . 8 𝐷 ∈ (TopOpen‘ℂfld)
128 isopn3i 23105 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐷 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
129117, 127, 128mp2an 692 . . . . . . 7 ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷
130129a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
13131, 98, 96, 107, 38, 116, 111, 130dvmptres2 26014 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (𝑥𝐷 ↦ 1))
132 oveq2 7438 . . . . . . 7 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
133132cbvmptv 5260 . . . . . 6 (𝑥𝐷 ↦ (1 + 𝑥)) = (𝑦𝐷 ↦ (1 + 𝑦))
134133oveq2i 7441 . . . . 5 (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (ℂ D (𝑦𝐷 ↦ (1 + 𝑦)))
135 eqidd 2735 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
136135cbvmptv 5260 . . . . 5 (𝑥𝐷 ↦ 1) = (𝑦𝐷 ↦ 1)
137131, 134, 1363eqtr3g 2797 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ (1 + 𝑦))) = (𝑦𝐷 ↦ 1))
13886dvcncxp1 26799 . . . . 5 (-𝐶 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
13992, 138syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
140 oveq1 7437 . . . 4 (𝑥 = (1 + 𝑦) → (𝑥𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
141 oveq1 7437 . . . . 5 (𝑥 = (1 + 𝑦) → (𝑥𝑐(-𝐶 − 1)) = ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
142141oveq2d 7446 . . . 4 (𝑥 = (1 + 𝑦) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
14331, 31, 88, 32, 94, 95, 137, 139, 140, 142dvmptco 26024 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)))
14491adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
145144negcld 11604 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → -𝐶 ∈ ℂ)
146145, 32subcld 11617 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 − 1) ∈ ℂ)
14740, 146cxpcld 26764 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) ∈ ℂ)
148145, 147mulcld 11278 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) ∈ ℂ)
149148mulridd 11275 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
150149mpteq2dva 5247 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)) = (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))))
151 nfcv 2902 . . . . 5 𝑏(-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
152 nfcv 2902 . . . . 5 𝑦(-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
153 oveq2 7438 . . . . . . 7 (𝑦 = 𝑏 → (1 + 𝑦) = (1 + 𝑏))
154153oveq1d 7445 . . . . . 6 (𝑦 = 𝑏 → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) = ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
155154oveq2d 7446 . . . . 5 (𝑦 = 𝑏 → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
15623, 22, 151, 152, 155cbvmptf 5256 . . . 4 (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
157156a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
158143, 150, 1573eqtrd 2778 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
15929, 158eqtrid 2786 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  {crab 3432  Vcvv 3477  cdif 3959  wss 3962  {cpr 4632   cuni 4911   class class class wbr 5147  cmpt 5230  ccnv 5687  dom cdm 5688  cima 5691  ccom 5692   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  cmin 11489  -cneg 11490  cn 12263  0cn0 12523  +crp 13031  (,]cioc 13384  [,)cico 13385  seqcseq 14038  cexp 14098  abscabs 15269  cli 15516  t crest 17466  TopOpenctopn 17467  ∞Metcxmet 21366  ballcbl 21368  fldccnfld 21381  Topctop 22914  TopSpctps 22953  intcnt 23040   D cdv 25912  𝑐ccxp 26611  C𝑐cbcc 44331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-prod 15936  df-fallfac 16039  df-ef 16099  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613  df-bcc 44332
This theorem is referenced by:  binomcxplemnotnn0  44351
  Copyright terms: Public domain W3C validator