Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvbinom Structured version   Visualization version   GIF version

Theorem binomcxplemdvbinom 39522
Description: Lemma for binomcxp 39526. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 39524 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a non-negated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemdvbinom ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Distinct variable groups:   𝑗,𝑘,𝜑   𝑘,𝑏,𝐶   𝐶,𝑗   𝐹,𝑏,𝑘   𝑆,𝑟   𝑟,𝑏
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemdvbinom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.d . . . . 5 𝐷 = (abs “ (0[,)𝑅))
2 nfcv 2934 . . . . . 6 𝑏abs
3 nfcv 2934 . . . . . . 7 𝑏0
4 nfcv 2934 . . . . . . 7 𝑏[,)
5 binomcxplem.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
6 nfcv 2934 . . . . . . . . . . . 12 𝑏 +
7 binomcxplem.s . . . . . . . . . . . . . 14 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
8 nfmpt1 4984 . . . . . . . . . . . . . 14 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
97, 8nfcxfr 2932 . . . . . . . . . . . . 13 𝑏𝑆
10 nfcv 2934 . . . . . . . . . . . . 13 𝑏𝑟
119, 10nffv 6458 . . . . . . . . . . . 12 𝑏(𝑆𝑟)
123, 6, 11nfseq 13134 . . . . . . . . . . 11 𝑏seq0( + , (𝑆𝑟))
1312nfel1 2948 . . . . . . . . . 10 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
14 nfcv 2934 . . . . . . . . . 10 𝑏
1513, 14nfrab 3310 . . . . . . . . 9 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
16 nfcv 2934 . . . . . . . . 9 𝑏*
17 nfcv 2934 . . . . . . . . 9 𝑏 <
1815, 16, 17nfsup 8647 . . . . . . . 8 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
195, 18nfcxfr 2932 . . . . . . 7 𝑏𝑅
203, 4, 19nfov 6954 . . . . . 6 𝑏(0[,)𝑅)
212, 20nfima 5730 . . . . 5 𝑏(abs “ (0[,)𝑅))
221, 21nfcxfr 2932 . . . 4 𝑏𝐷
23 nfcv 2934 . . . 4 𝑦𝐷
24 nfcv 2934 . . . 4 𝑦((1 + 𝑏)↑𝑐-𝐶)
25 nfcv 2934 . . . 4 𝑏((1 + 𝑦)↑𝑐-𝐶)
26 oveq2 6932 . . . . 5 (𝑏 = 𝑦 → (1 + 𝑏) = (1 + 𝑦))
2726oveq1d 6939 . . . 4 (𝑏 = 𝑦 → ((1 + 𝑏)↑𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
2822, 23, 24, 25, 27cbvmptf 4985 . . 3 (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶)) = (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))
2928oveq2i 6935 . 2 (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶)))
30 cnelprrecn 10367 . . . . 5 ℂ ∈ {ℝ, ℂ}
3130a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
32 1cnd 10373 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 1 ∈ ℂ)
33 cnvimass 5741 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
341, 33eqsstri 3854 . . . . . . . . 9 𝐷 ⊆ dom abs
35 absf 14491 . . . . . . . . . 10 abs:ℂ⟶ℝ
3635fdmi 6303 . . . . . . . . 9 dom abs = ℂ
3734, 36sseqtri 3856 . . . . . . . 8 𝐷 ⊆ ℂ
3837a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐷 ⊆ ℂ)
3938sselda 3821 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
4032, 39addcld 10398 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ ℂ)
41 simpr 479 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
42 1cnd 10373 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℂ)
4339adantr 474 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43pncan2d 10738 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) = 𝑦)
45 1red 10379 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℝ)
4641, 45resubcld 10806 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) ∈ ℝ)
4744, 46eqeltrrd 2860 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℝ)
48 1pneg1e0 11506 . . . . . . . . 9 (1 + -1) = 0
49 1red 10379 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
5049renegcld 10805 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 ∈ ℝ)
51 simpr 479 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
52 ffn 6293 . . . . . . . . . . . . . . . . . . . 20 (abs:ℂ⟶ℝ → abs Fn ℂ)
53 elpreima 6602 . . . . . . . . . . . . . . . . . . . 20 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅))))
5435, 52, 53mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅)))
5554simprbi 492 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (abs “ (0[,)𝑅)) → (abs‘𝑦) ∈ (0[,)𝑅))
5655, 1eleq2s 2877 . . . . . . . . . . . . . . . . 17 (𝑦𝐷 → (abs‘𝑦) ∈ (0[,)𝑅))
57 0re 10380 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
58 ssrab2 3908 . . . . . . . . . . . . . . . . . . . . 21 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
59 ressxr 10422 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℝ*
6058, 59sstri 3830 . . . . . . . . . . . . . . . . . . . 20 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
61 supxrcl 12462 . . . . . . . . . . . . . . . . . . . 20 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . 19 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
635, 62eqeltri 2855 . . . . . . . . . . . . . . . . . 18 𝑅 ∈ ℝ*
64 elico2 12554 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅)))
6557, 63, 64mp2an 682 . . . . . . . . . . . . . . . . 17 ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6656, 65sylib 210 . . . . . . . . . . . . . . . 16 (𝑦𝐷 → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6766simp3d 1135 . . . . . . . . . . . . . . 15 (𝑦𝐷 → (abs‘𝑦) < 𝑅)
6867adantl 475 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 𝑅)
69 binomcxp.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
70 binomcxp.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
71 binomcxp.lt . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
72 binomcxp.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
73 binomcxplem.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
7469, 70, 71, 72, 73, 7, 5binomcxplemradcnv 39521 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
7574adantr 474 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑅 = 1)
7668, 75breqtrd 4914 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 1)
7776adantr 474 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (abs‘𝑦) < 1)
7851, 49absltd 14583 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (-1 < 𝑦𝑦 < 1)))
7977, 78mpbid 224 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (-1 < 𝑦𝑦 < 1))
8079simpld 490 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 < 𝑦)
8150, 51, 49, 80ltadd2dd 10537 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (1 + -1) < (1 + 𝑦))
8248, 81syl5eqbrr 4924 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 0 < (1 + 𝑦))
8347, 82syldan 585 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 0 < (1 + 𝑦))
8441, 83elrpd 12183 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ+)
8584ex 403 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+))
86 eqid 2778 . . . . . 6 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8786ellogdm 24833 . . . . 5 ((1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + 𝑦) ∈ ℂ ∧ ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+)))
8840, 85, 87sylanbrc 578 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)))
89 eldifi 3955 . . . . . 6 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) → 𝑥 ∈ ℂ)
9089adantl 475 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → 𝑥 ∈ ℂ)
9172adantr 474 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
9291negcld 10723 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → -𝐶 ∈ ℂ)
9392adantr 474 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → -𝐶 ∈ ℂ)
9490, 93cxpcld 24902 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (𝑥𝑐-𝐶) ∈ ℂ)
95 ovexd 6958 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) ∈ V)
96 1cnd 10373 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
97 simpr 479 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9896, 97addcld 10398 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) ∈ ℂ)
99 c0ex 10372 . . . . . . . . 9 0 ∈ V
10099a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
101 1cnd 10373 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ∈ ℂ)
10231, 101dvmptc 24169 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
10331dvmptid 24168 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
10431, 96, 100, 102, 97, 96, 103dvmptadd 24171 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ (0 + 1)))
105 0p1e1 11509 . . . . . . . 8 (0 + 1) = 1
106105mpteq2i 4978 . . . . . . 7 (𝑥 ∈ ℂ ↦ (0 + 1)) = (𝑥 ∈ ℂ ↦ 1)
107104, 106syl6eq 2830 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ 1))
108 fvex 6461 . . . . . . . 8 (TopOpen‘ℂfld) ∈ V
109 cnfldtps 23000 . . . . . . . . . 10 fld ∈ TopSp
110 cnfldbas 20157 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
111 eqid 2778 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
112110, 111tpsuni 21159 . . . . . . . . . 10 (ℂfld ∈ TopSp → ℂ = (TopOpen‘ℂfld))
113109, 112ax-mp 5 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
114113restid 16491 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ V → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
115108, 114ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
116115eqcomi 2787 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
117111cnfldtop 23006 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
118 eqid 2778 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
119118cnbl0 22996 . . . . . . . . . . 11 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅))
12063, 119ax-mp 5 . . . . . . . . . 10 (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅)
1211, 120eqtri 2802 . . . . . . . . 9 𝐷 = (0(ball‘(abs ∘ − ))𝑅)
122 cnxmet 22995 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
123 0cn 10370 . . . . . . . . . 10 0 ∈ ℂ
124111cnfldtopn 23004 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
125124blopn 22724 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
126122, 123, 63, 125mp3an 1534 . . . . . . . . 9 (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld)
127121, 126eqeltri 2855 . . . . . . . 8 𝐷 ∈ (TopOpen‘ℂfld)
128 isopn3i 21305 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐷 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
129117, 127, 128mp2an 682 . . . . . . 7 ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷
130129a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
13131, 98, 96, 107, 38, 116, 111, 130dvmptres2 24173 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (𝑥𝐷 ↦ 1))
132 oveq2 6932 . . . . . . 7 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
133132cbvmptv 4987 . . . . . 6 (𝑥𝐷 ↦ (1 + 𝑥)) = (𝑦𝐷 ↦ (1 + 𝑦))
134133oveq2i 6935 . . . . 5 (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (ℂ D (𝑦𝐷 ↦ (1 + 𝑦)))
135 eqidd 2779 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
136135cbvmptv 4987 . . . . 5 (𝑥𝐷 ↦ 1) = (𝑦𝐷 ↦ 1)
137131, 134, 1363eqtr3g 2837 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ (1 + 𝑦))) = (𝑦𝐷 ↦ 1))
13886dvcncxp1 24935 . . . . 5 (-𝐶 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
13992, 138syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
140 oveq1 6931 . . . 4 (𝑥 = (1 + 𝑦) → (𝑥𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
141 oveq1 6931 . . . . 5 (𝑥 = (1 + 𝑦) → (𝑥𝑐(-𝐶 − 1)) = ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
142141oveq2d 6940 . . . 4 (𝑥 = (1 + 𝑦) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
14331, 31, 88, 32, 94, 95, 137, 139, 140, 142dvmptco 24183 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)))
14491adantr 474 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
145144negcld 10723 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → -𝐶 ∈ ℂ)
146145, 32subcld 10736 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 − 1) ∈ ℂ)
14740, 146cxpcld 24902 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) ∈ ℂ)
148145, 147mulcld 10399 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) ∈ ℂ)
149148mulid1d 10396 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
150149mpteq2dva 4981 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)) = (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))))
151 nfcv 2934 . . . . 5 𝑏(-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
152 nfcv 2934 . . . . 5 𝑦(-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
153 oveq2 6932 . . . . . . 7 (𝑦 = 𝑏 → (1 + 𝑦) = (1 + 𝑏))
154153oveq1d 6939 . . . . . 6 (𝑦 = 𝑏 → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) = ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
155154oveq2d 6940 . . . . 5 (𝑦 = 𝑏 → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
15623, 22, 151, 152, 155cbvmptf 4985 . . . 4 (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
157156a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
158143, 150, 1573eqtrd 2818 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
15929, 158syl5eq 2826 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398  cdif 3789  wss 3792  {cpr 4400   cuni 4673   class class class wbr 4888  cmpt 4967  ccnv 5356  dom cdm 5357  cima 5360  ccom 5361   Fn wfn 6132  wf 6133  cfv 6137  (class class class)co 6924  supcsup 8636  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279  -∞cmnf 10411  *cxr 10412   < clt 10413  cle 10414  cmin 10608  -cneg 10609  cn 11379  0cn0 11647  +crp 12142  (,]cioc 12493  [,)cico 12494  seqcseq 13124  cexp 13183  abscabs 14387  cli 14632  t crest 16478  TopOpenctopn 16479  ∞Metcxmet 20138  ballcbl 20140  fldccnfld 20153  Topctop 21116  TopSpctps 21155  intcnt 21240   D cdv 24075  𝑐ccxp 24750  C𝑐cbcc 39505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-ioo 12496  df-ioc 12497  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-fl 12917  df-mod 12993  df-seq 13125  df-exp 13184  df-fac 13385  df-bc 13414  df-hash 13442  df-shft 14220  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-limsup 14619  df-clim 14636  df-rlim 14637  df-sum 14834  df-prod 15048  df-fallfac 15149  df-ef 15209  df-sin 15211  df-cos 15212  df-tan 15213  df-pi 15214  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-rest 16480  df-topn 16481  df-0g 16499  df-gsum 16500  df-topgen 16501  df-pt 16502  df-prds 16505  df-xrs 16559  df-qtop 16564  df-imas 16565  df-xps 16567  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-mulg 17939  df-cntz 18144  df-cmn 18592  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-fbas 20150  df-fg 20151  df-cnfld 20154  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-cld 21242  df-ntr 21243  df-cls 21244  df-nei 21321  df-lp 21359  df-perf 21360  df-cn 21450  df-cnp 21451  df-haus 21538  df-cmp 21610  df-tx 21785  df-hmeo 21978  df-fil 22069  df-fm 22161  df-flim 22162  df-flf 22163  df-xms 22544  df-ms 22545  df-tms 22546  df-cncf 23100  df-limc 24078  df-dv 24079  df-log 24751  df-cxp 24752  df-bcc 39506
This theorem is referenced by:  binomcxplemnotnn0  39525
  Copyright terms: Public domain W3C validator