Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvbinom Structured version   Visualization version   GIF version

Theorem binomcxplemdvbinom 44342
Description: Lemma for binomcxp 44346. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 44344 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a nonnegated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemdvbinom ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Distinct variable groups:   𝑗,𝑘,𝜑   𝑘,𝑏,𝐶   𝐶,𝑗   𝐹,𝑏,𝑘   𝑆,𝑟   𝑟,𝑏
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemdvbinom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.d . . . . 5 𝐷 = (abs “ (0[,)𝑅))
2 nfcv 2891 . . . . . 6 𝑏abs
3 nfcv 2891 . . . . . . 7 𝑏0
4 nfcv 2891 . . . . . . 7 𝑏[,)
5 binomcxplem.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
6 nfcv 2891 . . . . . . . . . . . 12 𝑏 +
7 binomcxplem.s . . . . . . . . . . . . . 14 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
8 nfmpt1 5206 . . . . . . . . . . . . . 14 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
97, 8nfcxfr 2889 . . . . . . . . . . . . 13 𝑏𝑆
10 nfcv 2891 . . . . . . . . . . . . 13 𝑏𝑟
119, 10nffv 6868 . . . . . . . . . . . 12 𝑏(𝑆𝑟)
123, 6, 11nfseq 13976 . . . . . . . . . . 11 𝑏seq0( + , (𝑆𝑟))
1312nfel1 2908 . . . . . . . . . 10 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
14 nfcv 2891 . . . . . . . . . 10 𝑏
1513, 14nfrabw 3443 . . . . . . . . 9 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
16 nfcv 2891 . . . . . . . . 9 𝑏*
17 nfcv 2891 . . . . . . . . 9 𝑏 <
1815, 16, 17nfsup 9402 . . . . . . . 8 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
195, 18nfcxfr 2889 . . . . . . 7 𝑏𝑅
203, 4, 19nfov 7417 . . . . . 6 𝑏(0[,)𝑅)
212, 20nfima 6039 . . . . 5 𝑏(abs “ (0[,)𝑅))
221, 21nfcxfr 2889 . . . 4 𝑏𝐷
23 nfcv 2891 . . . 4 𝑦𝐷
24 nfcv 2891 . . . 4 𝑦((1 + 𝑏)↑𝑐-𝐶)
25 nfcv 2891 . . . 4 𝑏((1 + 𝑦)↑𝑐-𝐶)
26 oveq2 7395 . . . . 5 (𝑏 = 𝑦 → (1 + 𝑏) = (1 + 𝑦))
2726oveq1d 7402 . . . 4 (𝑏 = 𝑦 → ((1 + 𝑏)↑𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
2822, 23, 24, 25, 27cbvmptf 5207 . . 3 (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶)) = (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))
2928oveq2i 7398 . 2 (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶)))
30 cnelprrecn 11161 . . . . 5 ℂ ∈ {ℝ, ℂ}
3130a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
32 1cnd 11169 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 1 ∈ ℂ)
33 cnvimass 6053 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
341, 33eqsstri 3993 . . . . . . . . 9 𝐷 ⊆ dom abs
35 absf 15304 . . . . . . . . . 10 abs:ℂ⟶ℝ
3635fdmi 6699 . . . . . . . . 9 dom abs = ℂ
3734, 36sseqtri 3995 . . . . . . . 8 𝐷 ⊆ ℂ
3837a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐷 ⊆ ℂ)
3938sselda 3946 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
4032, 39addcld 11193 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ ℂ)
41 simpr 484 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
42 1cnd 11169 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℂ)
4339adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43pncan2d 11535 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) = 𝑦)
45 1red 11175 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℝ)
4641, 45resubcld 11606 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) ∈ ℝ)
4744, 46eqeltrrd 2829 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℝ)
48 1pneg1e0 12300 . . . . . . . . 9 (1 + -1) = 0
49 1red 11175 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
5049renegcld 11605 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 ∈ ℝ)
51 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
52 ffn 6688 . . . . . . . . . . . . . . . . . . . 20 (abs:ℂ⟶ℝ → abs Fn ℂ)
53 elpreima 7030 . . . . . . . . . . . . . . . . . . . 20 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅))))
5435, 52, 53mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅)))
5554simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (abs “ (0[,)𝑅)) → (abs‘𝑦) ∈ (0[,)𝑅))
5655, 1eleq2s 2846 . . . . . . . . . . . . . . . . 17 (𝑦𝐷 → (abs‘𝑦) ∈ (0[,)𝑅))
57 0re 11176 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
58 ssrab2 4043 . . . . . . . . . . . . . . . . . . . . 21 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
59 ressxr 11218 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℝ*
6058, 59sstri 3956 . . . . . . . . . . . . . . . . . . . 20 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
61 supxrcl 13275 . . . . . . . . . . . . . . . . . . . 20 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . 19 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
635, 62eqeltri 2824 . . . . . . . . . . . . . . . . . 18 𝑅 ∈ ℝ*
64 elico2 13371 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅)))
6557, 63, 64mp2an 692 . . . . . . . . . . . . . . . . 17 ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6656, 65sylib 218 . . . . . . . . . . . . . . . 16 (𝑦𝐷 → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6766simp3d 1144 . . . . . . . . . . . . . . 15 (𝑦𝐷 → (abs‘𝑦) < 𝑅)
6867adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 𝑅)
69 binomcxp.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
70 binomcxp.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
71 binomcxp.lt . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
72 binomcxp.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
73 binomcxplem.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
7469, 70, 71, 72, 73, 7, 5binomcxplemradcnv 44341 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
7574adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑅 = 1)
7668, 75breqtrd 5133 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 1)
7776adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (abs‘𝑦) < 1)
7851, 49absltd 15398 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (-1 < 𝑦𝑦 < 1)))
7977, 78mpbid 232 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (-1 < 𝑦𝑦 < 1))
8079simpld 494 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 < 𝑦)
8150, 51, 49, 80ltadd2dd 11333 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (1 + -1) < (1 + 𝑦))
8248, 81eqbrtrrid 5143 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 0 < (1 + 𝑦))
8347, 82syldan 591 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 0 < (1 + 𝑦))
8441, 83elrpd 12992 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ+)
8584ex 412 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+))
86 eqid 2729 . . . . . 6 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8786ellogdm 26548 . . . . 5 ((1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + 𝑦) ∈ ℂ ∧ ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+)))
8840, 85, 87sylanbrc 583 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)))
89 eldifi 4094 . . . . . 6 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) → 𝑥 ∈ ℂ)
9089adantl 481 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → 𝑥 ∈ ℂ)
9172adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
9291negcld 11520 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → -𝐶 ∈ ℂ)
9392adantr 480 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → -𝐶 ∈ ℂ)
9490, 93cxpcld 26617 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (𝑥𝑐-𝐶) ∈ ℂ)
95 ovexd 7422 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) ∈ V)
96 1cnd 11169 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
97 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9896, 97addcld 11193 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) ∈ ℂ)
99 c0ex 11168 . . . . . . . . 9 0 ∈ V
10099a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
101 1cnd 11169 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ∈ ℂ)
10231, 101dvmptc 25862 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
10331dvmptid 25861 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
10431, 96, 100, 102, 97, 96, 103dvmptadd 25864 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ (0 + 1)))
105 0p1e1 12303 . . . . . . . 8 (0 + 1) = 1
106105mpteq2i 5203 . . . . . . 7 (𝑥 ∈ ℂ ↦ (0 + 1)) = (𝑥 ∈ ℂ ↦ 1)
107104, 106eqtrdi 2780 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ 1))
108 fvex 6871 . . . . . . . 8 (TopOpen‘ℂfld) ∈ V
109 cnfldtps 24665 . . . . . . . . . 10 fld ∈ TopSp
110 cnfldbas 21268 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
111 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
112110, 111tpsuni 22823 . . . . . . . . . 10 (ℂfld ∈ TopSp → ℂ = (TopOpen‘ℂfld))
113109, 112ax-mp 5 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
114113restid 17396 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ V → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
115108, 114ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
116115eqcomi 2738 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
117111cnfldtop 24671 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
118 eqid 2729 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
119118cnbl0 24661 . . . . . . . . . . 11 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅))
12063, 119ax-mp 5 . . . . . . . . . 10 (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅)
1211, 120eqtri 2752 . . . . . . . . 9 𝐷 = (0(ball‘(abs ∘ − ))𝑅)
122 cnxmet 24660 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
123 0cn 11166 . . . . . . . . . 10 0 ∈ ℂ
124111cnfldtopn 24669 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
125124blopn 24388 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
126122, 123, 63, 125mp3an 1463 . . . . . . . . 9 (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld)
127121, 126eqeltri 2824 . . . . . . . 8 𝐷 ∈ (TopOpen‘ℂfld)
128 isopn3i 22969 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐷 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
129117, 127, 128mp2an 692 . . . . . . 7 ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷
130129a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
13131, 98, 96, 107, 38, 116, 111, 130dvmptres2 25866 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (𝑥𝐷 ↦ 1))
132 oveq2 7395 . . . . . . 7 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
133132cbvmptv 5211 . . . . . 6 (𝑥𝐷 ↦ (1 + 𝑥)) = (𝑦𝐷 ↦ (1 + 𝑦))
134133oveq2i 7398 . . . . 5 (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (ℂ D (𝑦𝐷 ↦ (1 + 𝑦)))
135 eqidd 2730 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
136135cbvmptv 5211 . . . . 5 (𝑥𝐷 ↦ 1) = (𝑦𝐷 ↦ 1)
137131, 134, 1363eqtr3g 2787 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ (1 + 𝑦))) = (𝑦𝐷 ↦ 1))
13886dvcncxp1 26652 . . . . 5 (-𝐶 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
13992, 138syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
140 oveq1 7394 . . . 4 (𝑥 = (1 + 𝑦) → (𝑥𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
141 oveq1 7394 . . . . 5 (𝑥 = (1 + 𝑦) → (𝑥𝑐(-𝐶 − 1)) = ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
142141oveq2d 7403 . . . 4 (𝑥 = (1 + 𝑦) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
14331, 31, 88, 32, 94, 95, 137, 139, 140, 142dvmptco 25876 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)))
14491adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
145144negcld 11520 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → -𝐶 ∈ ℂ)
146145, 32subcld 11533 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 − 1) ∈ ℂ)
14740, 146cxpcld 26617 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) ∈ ℂ)
148145, 147mulcld 11194 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) ∈ ℂ)
149148mulridd 11191 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
150149mpteq2dva 5200 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)) = (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))))
151 nfcv 2891 . . . . 5 𝑏(-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
152 nfcv 2891 . . . . 5 𝑦(-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
153 oveq2 7395 . . . . . . 7 (𝑦 = 𝑏 → (1 + 𝑦) = (1 + 𝑏))
154153oveq1d 7402 . . . . . 6 (𝑦 = 𝑏 → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) = ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
155154oveq2d 7403 . . . . 5 (𝑦 = 𝑏 → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
15623, 22, 151, 152, 155cbvmptf 5207 . . . 4 (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
157156a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
158143, 150, 1573eqtrd 2768 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
15929, 158eqtrid 2776 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  {cpr 4591   cuni 4871   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  0cn0 12442  +crp 12951  (,]cioc 13307  [,)cico 13308  seqcseq 13966  cexp 14026  abscabs 15200  cli 15450  t crest 17383  TopOpenctopn 17384  ∞Metcxmet 21249  ballcbl 21251  fldccnfld 21264  Topctop 22780  TopSpctps 22819  intcnt 22904   D cdv 25764  𝑐ccxp 26464  C𝑐cbcc 44325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-fallfac 15973  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-bcc 44326
This theorem is referenced by:  binomcxplemnotnn0  44345
  Copyright terms: Public domain W3C validator