![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stowei | Structured version Visualization version GIF version |
Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function ℎ in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 44205: often times it will be better to use stoweid 44205 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stowei.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
stowei.2 | ⊢ 𝐽 ∈ Comp |
stowei.3 | ⊢ 𝑇 = ∪ 𝐽 |
stowei.4 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stowei.5 | ⊢ 𝐴 ⊆ 𝐶 |
stowei.6 | ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stowei.7 | ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stowei.8 | ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
stowei.9 | ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) |
stowei.10 | ⊢ 𝐹 ∈ 𝐶 |
stowei.11 | ⊢ 𝐸 ∈ ℝ+ |
Ref | Expression |
---|---|
stowei | ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
2 | nftru 1806 | . . 3 ⊢ Ⅎ𝑡⊤ | |
3 | stowei.1 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
4 | stowei.2 | . . . 4 ⊢ 𝐽 ∈ Comp | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 𝐽 ∈ Comp) |
6 | stowei.3 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
7 | stowei.4 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
8 | stowei.5 | . . . 4 ⊢ 𝐴 ⊆ 𝐶 | |
9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐶) |
10 | stowei.6 | . . . 4 ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
11 | 10 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
12 | stowei.7 | . . . 4 ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
13 | 12 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
14 | stowei.8 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
15 | 14 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
16 | stowei.9 | . . . 4 ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) | |
17 | 16 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) |
18 | stowei.10 | . . . 4 ⊢ 𝐹 ∈ 𝐶 | |
19 | 18 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹 ∈ 𝐶) |
20 | stowei.11 | . . . 4 ⊢ 𝐸 ∈ ℝ+ | |
21 | 20 | a1i 11 | . . 3 ⊢ (⊤ → 𝐸 ∈ ℝ+) |
22 | 1, 2, 3, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21 | stoweid 44205 | . 2 ⊢ (⊤ → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
23 | 22 | mptru 1548 | 1 ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ⊆ wss 3908 ∪ cuni 4863 class class class wbr 5103 ↦ cmpt 5186 ran crn 5632 ‘cfv 6493 (class class class)co 7351 ℝcr 11008 + caddc 11012 · cmul 11014 < clt 11147 − cmin 11343 ℝ+crp 12869 (,)cioo 13218 abscabs 15079 topGenctg 17279 Cn ccn 22527 Compccmp 22689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-inf2 9535 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-of 7609 df-om 7795 df-1st 7913 df-2nd 7914 df-supp 8085 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-2o 8405 df-er 8606 df-map 8725 df-pm 8726 df-ixp 8794 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-fsupp 9264 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9404 df-card 9833 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-4 12176 df-5 12177 df-6 12178 df-7 12179 df-8 12180 df-9 12181 df-n0 12372 df-z 12458 df-dec 12577 df-uz 12722 df-q 12828 df-rp 12870 df-xneg 12987 df-xadd 12988 df-xmul 12989 df-ioo 13222 df-ioc 13223 df-ico 13224 df-icc 13225 df-fz 13379 df-fzo 13522 df-fl 13651 df-seq 13861 df-exp 13922 df-hash 14185 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 df-clim 15330 df-rlim 15331 df-sum 15531 df-struct 16979 df-sets 16996 df-slot 17014 df-ndx 17026 df-base 17044 df-ress 17073 df-plusg 17106 df-mulr 17107 df-starv 17108 df-sca 17109 df-vsca 17110 df-ip 17111 df-tset 17112 df-ple 17113 df-ds 17115 df-unif 17116 df-hom 17117 df-cco 17118 df-rest 17264 df-topn 17265 df-0g 17283 df-gsum 17284 df-topgen 17285 df-pt 17286 df-prds 17289 df-xrs 17344 df-qtop 17349 df-imas 17350 df-xps 17352 df-mre 17426 df-mrc 17427 df-acs 17429 df-mgm 18457 df-sgrp 18506 df-mnd 18517 df-submnd 18562 df-mulg 18832 df-cntz 19056 df-cmn 19523 df-psmet 20741 df-xmet 20742 df-met 20743 df-bl 20744 df-mopn 20745 df-cnfld 20750 df-top 22195 df-topon 22212 df-topsp 22234 df-bases 22248 df-cld 22322 df-cn 22530 df-cnp 22531 df-cmp 22690 df-tx 22865 df-hmeo 23058 df-xms 23625 df-ms 23626 df-tms 23627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |