| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stowei | Structured version Visualization version GIF version | ||
| Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function ℎ in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 46045: often times it will be better to use stoweid 46045 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stowei.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
| stowei.2 | ⊢ 𝐽 ∈ Comp |
| stowei.3 | ⊢ 𝑇 = ∪ 𝐽 |
| stowei.4 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| stowei.5 | ⊢ 𝐴 ⊆ 𝐶 |
| stowei.6 | ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| stowei.7 | ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| stowei.8 | ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
| stowei.9 | ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) |
| stowei.10 | ⊢ 𝐹 ∈ 𝐶 |
| stowei.11 | ⊢ 𝐸 ∈ ℝ+ |
| Ref | Expression |
|---|---|
| stowei | ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
| 2 | nftru 1804 | . . 3 ⊢ Ⅎ𝑡⊤ | |
| 3 | stowei.1 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 4 | stowei.2 | . . . 4 ⊢ 𝐽 ∈ Comp | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 𝐽 ∈ Comp) |
| 6 | stowei.3 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
| 7 | stowei.4 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 8 | stowei.5 | . . . 4 ⊢ 𝐴 ⊆ 𝐶 | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐶) |
| 10 | stowei.6 | . . . 4 ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
| 11 | 10 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| 12 | stowei.7 | . . . 4 ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
| 13 | 12 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| 14 | stowei.8 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
| 16 | stowei.9 | . . . 4 ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) | |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) |
| 18 | stowei.10 | . . . 4 ⊢ 𝐹 ∈ 𝐶 | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹 ∈ 𝐶) |
| 20 | stowei.11 | . . . 4 ⊢ 𝐸 ∈ ℝ+ | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (⊤ → 𝐸 ∈ ℝ+) |
| 22 | 1, 2, 3, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21 | stoweid 46045 | . 2 ⊢ (⊤ → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
| 23 | 22 | mptru 1547 | 1 ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11365 ℝ+crp 12911 (,)cioo 13266 abscabs 15159 topGenctg 17359 Cn ccn 23127 Compccmp 23289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-cn 23130 df-cnp 23131 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |