| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stowei | Structured version Visualization version GIF version | ||
| Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function ℎ in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 46185: often times it will be better to use stoweid 46185 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stowei.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
| stowei.2 | ⊢ 𝐽 ∈ Comp |
| stowei.3 | ⊢ 𝑇 = ∪ 𝐽 |
| stowei.4 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| stowei.5 | ⊢ 𝐴 ⊆ 𝐶 |
| stowei.6 | ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| stowei.7 | ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| stowei.8 | ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
| stowei.9 | ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) |
| stowei.10 | ⊢ 𝐹 ∈ 𝐶 |
| stowei.11 | ⊢ 𝐸 ∈ ℝ+ |
| Ref | Expression |
|---|---|
| stowei | ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
| 2 | nftru 1805 | . . 3 ⊢ Ⅎ𝑡⊤ | |
| 3 | stowei.1 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 4 | stowei.2 | . . . 4 ⊢ 𝐽 ∈ Comp | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → 𝐽 ∈ Comp) |
| 6 | stowei.3 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
| 7 | stowei.4 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 8 | stowei.5 | . . . 4 ⊢ 𝐴 ⊆ 𝐶 | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐶) |
| 10 | stowei.6 | . . . 4 ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
| 11 | 10 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| 12 | stowei.7 | . . . 4 ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
| 13 | 12 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| 14 | stowei.8 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
| 16 | stowei.9 | . . . 4 ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) | |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) |
| 18 | stowei.10 | . . . 4 ⊢ 𝐹 ∈ 𝐶 | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹 ∈ 𝐶) |
| 20 | stowei.11 | . . . 4 ⊢ 𝐸 ∈ ℝ+ | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (⊤ → 𝐸 ∈ ℝ+) |
| 22 | 1, 2, 3, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21 | stoweid 46185 | . 2 ⊢ (⊤ → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
| 23 | 22 | mptru 1548 | 1 ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ∪ cuni 4858 class class class wbr 5093 ↦ cmpt 5174 ran crn 5620 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 + caddc 11016 · cmul 11018 < clt 11153 − cmin 11351 ℝ+crp 12892 (,)cioo 13247 abscabs 15143 topGenctg 17343 Cn ccn 23140 Compccmp 23302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-cn 23143 df-cnp 23144 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-xms 24236 df-ms 24237 df-tms 24238 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |