MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noeta Structured version   Visualization version   GIF version

Theorem noeta 27470
Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
noeta ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ 𝑂))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝑂   𝑥,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem noeta
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓))))
21nosupcbv 27429 . 2 if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
3 eqid 2732 . . 3 if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓))))
43noinfcbv 27444 . 2 if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎, ((𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
52, 4noetalem2 27469 1 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  cun 3946  wss 3948  ifcif 4528  {csn 4628  cop 4634   class class class wbr 5148  cmpt 5231  dom cdm 5676  cres 5678  cima 5679  Oncon0 6364  suc csuc 6366  cio 6493  cfv 6543  crio 7366  1oc1o 8461  2oc2o 8462   No csur 27367   <s cslt 27368   bday cbday 27369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-1o 8468  df-2o 8469  df-no 27370  df-slt 27371  df-bday 27372
This theorem is referenced by:  noeta2  27510  etasslt  27539
  Copyright terms: Public domain W3C validator