![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noeta | Structured version Visualization version GIF version |
Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
noeta | ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
2 | 1 | nosupcbv 27765 | . 2 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
3 | eqid 2740 | . . 3 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
4 | 3 | noinfcbv 27780 | . 2 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
5 | 2, 4 | noetalem2 27805 | 1 ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ∪ cun 3974 ⊆ wss 3976 ifcif 4548 {csn 4648 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 “ cima 5703 Oncon0 6395 suc csuc 6397 ℩cio 6523 ‘cfv 6573 ℩crio 7403 1oc1o 8515 2oc2o 8516 No csur 27702 <s cslt 27703 bday cbday 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 |
This theorem is referenced by: noeta2 27847 etasslt 27876 |
Copyright terms: Public domain | W3C validator |