Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noeta Structured version   Visualization version   GIF version

Theorem noeta 33873
Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
noeta ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ 𝑂))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝑂   𝑥,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem noeta
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓))))
21nosupcbv 33832 . 2 if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
3 eqid 2738 . . 3 if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓))))
43noinfcbv 33847 . 2 if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎, ((𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
52, 4noetalem2 33872 1 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  cun 3881  wss 3883  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  cima 5583  Oncon0 6251  suc csuc 6253  cio 6374  cfv 6418  crio 7211  1oc1o 8260  2oc2o 8261   No csur 33770   <s cslt 33771   bday cbday 33772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775
This theorem is referenced by:  noeta2  33906  etasslt  33934
  Copyright terms: Public domain W3C validator