Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noeta Structured version   Visualization version   GIF version

Theorem noeta 33946
Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
noeta ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ 𝑂))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝑂   𝑥,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem noeta
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓))))
21nosupcbv 33905 . 2 if(∃𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔, ((𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀𝑘𝐴𝑘 <s 𝑗 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
3 eqid 2738 . . 3 if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓))))
43noinfcbv 33920 . 2 if(∃𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓, ((𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), ( ∈ {𝑔 ∣ ∃𝑗𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀𝑘𝐵𝑗 <s 𝑘 → (𝑗 ↾ suc ) = (𝑘 ↾ suc )) ∧ (𝑗) = 𝑓)))) = if(∃𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎, ((𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
52, 4noetalem2 33945 1 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  cun 3885  wss 3887  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  cima 5592  Oncon0 6266  suc csuc 6268  cio 6389  cfv 6433  crio 7231  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844   bday cbday 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  noeta2  33979  etasslt  34007
  Copyright terms: Public domain W3C validator