Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > noeta | Structured version Visualization version GIF version |
Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
noeta | ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
2 | 1 | nosupcbv 33905 | . 2 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
3 | eqid 2738 | . . 3 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
4 | 3 | noinfcbv 33920 | . 2 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
5 | 2, 4 | noetalem2 33945 | 1 ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ∪ cun 3885 ⊆ wss 3887 ifcif 4459 {csn 4561 〈cop 4567 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ↾ cres 5591 “ cima 5592 Oncon0 6266 suc csuc 6268 ℩cio 6389 ‘cfv 6433 ℩crio 7231 1oc1o 8290 2oc2o 8291 No csur 33843 <s cslt 33844 bday cbday 33845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 |
This theorem is referenced by: noeta2 33979 etasslt 34007 |
Copyright terms: Public domain | W3C validator |