| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noeta | Structured version Visualization version GIF version | ||
| Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| noeta | ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
| 2 | 1 | nosupcbv 27612 | . 2 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
| 3 | eqid 2729 | . . 3 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
| 4 | 3 | noinfcbv 27627 | . 2 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
| 5 | 2, 4 | noetalem2 27652 | 1 ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∪ cun 3901 ⊆ wss 3903 ifcif 4476 {csn 4577 〈cop 4583 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ↾ cres 5621 “ cima 5622 Oncon0 6307 suc csuc 6309 ℩cio 6436 ‘cfv 6482 ℩crio 7305 1oc1o 8381 2oc2o 8382 No csur 27549 <s cslt 27550 bday cbday 27551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 |
| This theorem is referenced by: noeta2 27695 etasslt 27724 |
| Copyright terms: Public domain | W3C validator |