| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noeta | Structured version Visualization version GIF version | ||
| Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| noeta | ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
| 2 | 1 | nosupcbv 27647 | . 2 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {〈dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
| 3 | eqid 2729 | . . 3 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
| 4 | 3 | noinfcbv 27662 | . 2 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {〈dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o〉}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
| 5 | 2, 4 | noetalem2 27687 | 1 ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∪ cun 3909 ⊆ wss 3911 ifcif 4484 {csn 4585 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ↾ cres 5633 “ cima 5634 Oncon0 6320 suc csuc 6322 ℩cio 6450 ‘cfv 6499 ℩crio 7325 1oc1o 8404 2oc2o 8405 No csur 27584 <s cslt 27585 bday cbday 27586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-1o 8411 df-2o 8412 df-no 27587 df-slt 27588 df-bday 27589 |
| This theorem is referenced by: noeta2 27730 etasslt 27759 |
| Copyright terms: Public domain | W3C validator |