Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noeta Structured version   Visualization version   GIF version

Theorem noeta 33222
Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, there is an upper bound on the birthday of that surreal. Alling's axiom FE. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
noeta (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem noeta
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2895 . . . . . . 7 (𝑓 = 𝑐 → (𝑓 ∈ dom 𝑑𝑐 ∈ dom 𝑑))
2 suceq 6256 . . . . . . . . . . 11 (𝑓 = 𝑐 → suc 𝑓 = suc 𝑐)
32reseq2d 5853 . . . . . . . . . 10 (𝑓 = 𝑐 → (𝑑 ↾ suc 𝑓) = (𝑑 ↾ suc 𝑐))
42reseq2d 5853 . . . . . . . . . 10 (𝑓 = 𝑐 → (𝑒 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑐))
53, 4eqeq12d 2837 . . . . . . . . 9 (𝑓 = 𝑐 → ((𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓) ↔ (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)))
65imbi2d 343 . . . . . . . 8 (𝑓 = 𝑐 → ((¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ↔ (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))))
76ralbidv 3197 . . . . . . 7 (𝑓 = 𝑐 → (∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ↔ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))))
8 fveqeq2 6679 . . . . . . 7 (𝑓 = 𝑐 → ((𝑑𝑓) = 𝑎 ↔ (𝑑𝑐) = 𝑎))
91, 7, 83anbi123d 1432 . . . . . 6 (𝑓 = 𝑐 → ((𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎) ↔ (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
109rexbidv 3297 . . . . 5 (𝑓 = 𝑐 → (∃𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎) ↔ ∃𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
1110iotabidv 6339 . . . 4 (𝑓 = 𝑐 → (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎)) = (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
1211cbvmptv 5169 . . 3 (𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎))) = (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
13 ifeq2 4472 . . 3 ((𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎))) = (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))) → if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎)))) = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))))
1412, 13ax-mp 5 . 2 if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎)))) = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
15 eqid 2821 . 2 (if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎)))) ∪ ((suc ( bday 𝐵) ∖ dom if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎))))) × {1o})) = (if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎)))) ∪ ((suc ( bday 𝐵) ∖ dom if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑓 ∈ {𝑏 ∣ ∃𝑑𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐴 (𝑓 ∈ dom 𝑑 ∧ ∀𝑒𝐴𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑓) = (𝑒 ↾ suc 𝑓)) ∧ (𝑑𝑓) = 𝑎))))) × {1o}))
1614, 15noetalem5 33221 1 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  cdif 3933  cun 3934  wss 3936  ifcif 4467  {csn 4567  cop 4573   cuni 4838   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  cres 5557  cima 5558  suc csuc 6193  cio 6312  cfv 6355  crio 7113  1oc1o 8095  2oc2o 8096   No csur 33147   <s cslt 33148   bday cbday 33149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-1o 8102  df-2o 8103  df-no 33150  df-slt 33151  df-bday 33152
This theorem is referenced by:  conway  33264  etasslt  33274
  Copyright terms: Public domain W3C validator