![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noeta | Structured version Visualization version GIF version |
Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
noeta | ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
2 | 1 | nosupcbv 27066 | . 2 ⊢ if(∃𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔, ((℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔) ∪ {⟨dom (℩𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔), 2o⟩}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐴 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐴 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐴 (¬ 𝑘 <s 𝑗 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐴 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐴 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐴 (¬ 𝑒 <s 𝑑 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
3 | eqid 2733 | . . 3 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) | |
4 | 3 | noinfcbv 27081 | . 2 ⊢ if(∃𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓, ((℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓) ∪ {⟨dom (℩𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓), 1o⟩}), (ℎ ∈ {𝑔 ∣ ∃𝑗 ∈ 𝐵 (𝑔 ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc 𝑔) = (𝑘 ↾ suc 𝑔)))} ↦ (℩𝑓∃𝑗 ∈ 𝐵 (ℎ ∈ dom 𝑗 ∧ ∀𝑘 ∈ 𝐵 (¬ 𝑗 <s 𝑘 → (𝑗 ↾ suc ℎ) = (𝑘 ↾ suc ℎ)) ∧ (𝑗‘ℎ) = 𝑓)))) = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
5 | 2, 4 | noetalem2 27106 | 1 ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3061 ∃wrex 3070 ∪ cun 3909 ⊆ wss 3911 ifcif 4487 {csn 4587 ⟨cop 4593 class class class wbr 5106 ↦ cmpt 5189 dom cdm 5634 ↾ cres 5636 “ cima 5637 Oncon0 6318 suc csuc 6320 ℩cio 6447 ‘cfv 6497 ℩crio 7313 1oc1o 8406 2oc2o 8407 No csur 27004 <s cslt 27005 bday cbday 27006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-1o 8413 df-2o 8414 df-no 27007 df-slt 27008 df-bday 27009 |
This theorem is referenced by: noeta2 27146 etasslt 27174 |
Copyright terms: Public domain | W3C validator |