| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvfv1 | Structured version Visualization version GIF version | ||
| Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv1 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv1 6852 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
| 2 | 1 | fveq1d 6883 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
| 4 | f1of 6823 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 5 | fvco3 6983 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) | |
| 6 | 4, 5 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) |
| 7 | fvresi 7170 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶) | |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶) |
| 9 | 3, 6, 8 | 3eqtr3d 2779 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 I cid 5552 ◡ccnv 5658 ↾ cres 5661 ∘ ccom 5663 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: f1ocnvfv 7276 wemapwe 9716 fseqenlem2 10044 acndom 10070 isf34lem5 10397 axcc3 10457 pwfseqlem1 10677 hashdom 14402 fz1isolem 14484 cnrecnv 15189 sadcadd 16482 sadadd2 16484 invinv 17788 catcisolem 18128 mhmf1o 18779 rngisom1 20431 srngnvl 20815 mdetleib2 22531 2ndcdisj 23399 cnheiborlem 24909 iunmbl2 25515 dvcnvlem 25937 eff1olem 26514 logef 26547 adjbdlnb 32070 cnvbrabra 32098 fsumiunle 32813 ccatws1f1o 32932 fzto1stinvn 33120 cycpmfv1 33129 cycpmfv2 33130 cycpmco2lem7 33148 madjusmdetlem1 33863 tpr2rico 33948 esumiun 34130 lautj 40117 lautm 40118 ldilcnv 40139 ltrneq2 40172 trlcnv 40189 diaocN 41149 dihcnvid1 41296 dochocss 41390 mapdcnvid1N 41678 aks6d1c1p3 42128 sticksstones19 42183 nvocnvb 43413 grimcnv 47868 gricushgr 47897 uspgrlimlem2 47968 |
| Copyright terms: Public domain | W3C validator |