![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv1 | Structured version Visualization version GIF version |
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv1 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv1 6862 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
2 | 1 | fveq1d 6893 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
4 | f1of 6833 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
5 | fvco3 6990 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) |
7 | fvresi 7173 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶) | |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶) |
9 | 3, 6, 8 | 3eqtr3d 2779 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 I cid 5573 ◡ccnv 5675 ↾ cres 5678 ∘ ccom 5680 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: f1ocnvfv 7279 wemapwe 9698 fseqenlem2 10026 acndom 10052 isf34lem5 10379 axcc3 10439 pwfseqlem1 10659 hashdom 14346 fz1isolem 14429 cnrecnv 15119 sadcadd 16406 sadadd2 16408 invinv 17724 catcisolem 18070 mhmf1o 18724 rngisom1 20364 srngnvl 20695 mdetleib2 22409 2ndcdisj 23279 cnheiborlem 24799 iunmbl2 25405 dvcnvlem 25827 eff1olem 26396 logef 26429 adjbdlnb 31769 cnvbrabra 31797 fsumiunle 32467 fzto1stinvn 32698 cycpmfv1 32707 cycpmfv2 32708 cycpmco2lem7 32726 madjusmdetlem1 33270 tpr2rico 33355 esumiun 33555 lautj 39427 lautm 39428 ldilcnv 39449 ltrneq2 39482 trlcnv 39499 diaocN 40459 dihcnvid1 40606 dochocss 40700 mapdcnvid1N 40988 sticksstones19 41447 nvocnvb 42635 isomushgr 46952 |
Copyright terms: Public domain | W3C validator |