MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv1 Structured version   Visualization version   GIF version

Theorem f1ocnvfv1 7205
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 6787 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
21fveq1d 6819 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
32adantr 480 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
4 f1of 6758 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
5 fvco3 6916 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
64, 5sylan 580 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
7 fvresi 7102 . . 3 (𝐶𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶)
87adantl 481 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶)
93, 6, 83eqtr3d 2774 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   I cid 5505  ccnv 5610  cres 5613  ccom 5615  wf 6472  1-1-ontowf1o 6475  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by:  f1ocnvfv  7207  wemapwe  9582  fseqenlem2  9911  acndom  9937  isf34lem5  10264  axcc3  10324  pwfseqlem1  10544  hashdom  14281  fz1isolem  14363  cnrecnv  15067  sadcadd  16364  sadadd2  16366  invinv  17672  catcisolem  18012  mhmf1o  18699  rngisom1  20379  srngnvl  20760  mdetleib2  22498  2ndcdisj  23366  cnheiborlem  24875  iunmbl2  25480  dvcnvlem  25902  eff1olem  26479  logef  26512  adjbdlnb  32056  cnvbrabra  32084  fsumiunle  32804  ccatws1f1o  32924  fzto1stinvn  33065  cycpmfv1  33074  cycpmfv2  33075  cycpmco2lem7  33093  madjusmdetlem1  33832  tpr2rico  33917  esumiun  34099  lautj  40132  lautm  40133  ldilcnv  40154  ltrneq2  40187  trlcnv  40204  diaocN  41164  dihcnvid1  41311  dochocss  41405  mapdcnvid1N  41693  aks6d1c1p3  42143  sticksstones19  42198  nvocnvb  43455  grimcnv  47919  gricushgr  47948  uspgrlimlem2  48020
  Copyright terms: Public domain W3C validator