Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvfv1 | Structured version Visualization version GIF version |
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv1 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv1 6728 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
2 | 1 | fveq1d 6758 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
4 | f1of 6700 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
5 | fvco3 6849 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) |
7 | fvresi 7027 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶) | |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶) |
9 | 3, 6, 8 | 3eqtr3d 2786 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 I cid 5479 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: f1ocnvfv 7131 wemapwe 9385 fseqenlem2 9712 acndom 9738 isf34lem5 10065 axcc3 10125 pwfseqlem1 10345 hashdom 14022 fz1isolem 14103 cnrecnv 14804 sadcadd 16093 sadadd2 16095 invinv 17399 catcisolem 17741 mhmf1o 18355 srngnvl 20031 mdetleib2 21645 2ndcdisj 22515 cnheiborlem 24023 iunmbl2 24626 dvcnvlem 25045 eff1olem 25609 logef 25642 adjbdlnb 30347 cnvbrabra 30375 fsumiunle 31045 fzto1stinvn 31273 cycpmfv1 31282 cycpmfv2 31283 cycpmco2lem7 31301 madjusmdetlem1 31679 tpr2rico 31764 esumiun 31962 lautj 38034 lautm 38035 ldilcnv 38056 ltrneq2 38089 trlcnv 38106 diaocN 39066 dihcnvid1 39213 dochocss 39307 mapdcnvid1N 39595 sticksstones19 40049 isomushgr 45166 |
Copyright terms: Public domain | W3C validator |