MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv1 Structured version   Visualization version   GIF version

Theorem f1ocnvfv1 7277
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 6862 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
21fveq1d 6893 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
32adantr 480 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
4 f1of 6833 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
5 fvco3 6990 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
64, 5sylan 579 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
7 fvresi 7173 . . 3 (𝐶𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶)
87adantl 481 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶)
93, 6, 83eqtr3d 2779 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105   I cid 5573  ccnv 5675  cres 5678  ccom 5680  wf 6539  1-1-ontowf1o 6542  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  f1ocnvfv  7279  wemapwe  9698  fseqenlem2  10026  acndom  10052  isf34lem5  10379  axcc3  10439  pwfseqlem1  10659  hashdom  14346  fz1isolem  14429  cnrecnv  15119  sadcadd  16406  sadadd2  16408  invinv  17724  catcisolem  18070  mhmf1o  18724  rngisom1  20364  srngnvl  20695  mdetleib2  22409  2ndcdisj  23279  cnheiborlem  24799  iunmbl2  25405  dvcnvlem  25827  eff1olem  26396  logef  26429  adjbdlnb  31769  cnvbrabra  31797  fsumiunle  32467  fzto1stinvn  32698  cycpmfv1  32707  cycpmfv2  32708  cycpmco2lem7  32726  madjusmdetlem1  33270  tpr2rico  33355  esumiun  33555  lautj  39427  lautm  39428  ldilcnv  39449  ltrneq2  39482  trlcnv  39499  diaocN  40459  dihcnvid1  40606  dochocss  40700  mapdcnvid1N  40988  sticksstones19  41447  nvocnvb  42635  isomushgr  46952
  Copyright terms: Public domain W3C validator