| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvfv1 | Structured version Visualization version GIF version | ||
| Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv1 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv1 6829 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
| 2 | 1 | fveq1d 6860 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
| 4 | f1of 6800 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 5 | fvco3 6960 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) | |
| 6 | 4, 5 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) |
| 7 | fvresi 7147 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶) | |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶) |
| 9 | 3, 6, 8 | 3eqtr3d 2772 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 I cid 5532 ◡ccnv 5637 ↾ cres 5640 ∘ ccom 5642 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: f1ocnvfv 7253 wemapwe 9650 fseqenlem2 9978 acndom 10004 isf34lem5 10331 axcc3 10391 pwfseqlem1 10611 hashdom 14344 fz1isolem 14426 cnrecnv 15131 sadcadd 16428 sadadd2 16430 invinv 17732 catcisolem 18072 mhmf1o 18723 rngisom1 20375 srngnvl 20759 mdetleib2 22475 2ndcdisj 23343 cnheiborlem 24853 iunmbl2 25458 dvcnvlem 25880 eff1olem 26457 logef 26490 adjbdlnb 32013 cnvbrabra 32041 fsumiunle 32754 ccatws1f1o 32873 fzto1stinvn 33061 cycpmfv1 33070 cycpmfv2 33071 cycpmco2lem7 33089 madjusmdetlem1 33817 tpr2rico 33902 esumiun 34084 lautj 40087 lautm 40088 ldilcnv 40109 ltrneq2 40142 trlcnv 40159 diaocN 41119 dihcnvid1 41266 dochocss 41360 mapdcnvid1N 41648 aks6d1c1p3 42098 sticksstones19 42153 nvocnvb 43411 grimcnv 47885 gricushgr 47914 uspgrlimlem2 47985 |
| Copyright terms: Public domain | W3C validator |