![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv1 | Structured version Visualization version GIF version |
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv1 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv1 6891 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
2 | 1 | fveq1d 6922 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶)) |
4 | f1of 6862 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
5 | fvco3 7021 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹 ∘ 𝐹)‘𝐶) = (◡𝐹‘(𝐹‘𝐶))) |
7 | fvresi 7207 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶) | |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶) |
9 | 3, 6, 8 | 3eqtr3d 2788 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 I cid 5592 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: f1ocnvfv 7314 wemapwe 9766 fseqenlem2 10094 acndom 10120 isf34lem5 10447 axcc3 10507 pwfseqlem1 10727 hashdom 14428 fz1isolem 14510 cnrecnv 15214 sadcadd 16504 sadadd2 16506 invinv 17831 catcisolem 18177 mhmf1o 18831 rngisom1 20492 srngnvl 20873 mdetleib2 22615 2ndcdisj 23485 cnheiborlem 25005 iunmbl2 25611 dvcnvlem 26034 eff1olem 26608 logef 26641 adjbdlnb 32116 cnvbrabra 32144 fsumiunle 32833 ccatws1f1o 32918 fzto1stinvn 33097 cycpmfv1 33106 cycpmfv2 33107 cycpmco2lem7 33125 madjusmdetlem1 33773 tpr2rico 33858 esumiun 34058 lautj 40050 lautm 40051 ldilcnv 40072 ltrneq2 40105 trlcnv 40122 diaocN 41082 dihcnvid1 41229 dochocss 41323 mapdcnvid1N 41611 aks6d1c1p3 42067 sticksstones19 42122 nvocnvb 43384 grimcnv 47763 gricushgr 47770 uspgrlimlem2 47813 |
Copyright terms: Public domain | W3C validator |