| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > occon | Structured version Visualization version GIF version | ||
| Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| occon | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4027 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) |
| 3 | 2 | ss2rabdv 4051 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 5 | ocval 31261 | . . . 4 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) | |
| 6 | 5 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) |
| 7 | ocval 31261 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) | |
| 8 | 7 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 9 | 4, 6, 8 | 3sstr4d 4014 | . 2 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) ⊆ (⊥‘𝐴)) |
| 10 | 9 | ex 412 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℋchba 30900 ·ih csp 30903 ⊥cort 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-oc 31233 |
| This theorem is referenced by: occon2 31269 occon3 31278 ococin 31389 ssjo 31428 chsscon3i 31442 shjshsi 31473 |
| Copyright terms: Public domain | W3C validator |