| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > occon | Structured version Visualization version GIF version | ||
| Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| occon | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4006 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) |
| 3 | 2 | ss2rabdv 4029 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 5 | ocval 31242 | . . . 4 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) | |
| 6 | 5 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) |
| 7 | ocval 31242 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) | |
| 8 | 7 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 9 | 4, 6, 8 | 3sstr4d 3993 | . 2 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) ⊆ (⊥‘𝐴)) |
| 10 | 9 | ex 412 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℋchba 30881 ·ih csp 30884 ⊥cort 30892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-hilex 30961 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-oc 31214 |
| This theorem is referenced by: occon2 31250 occon3 31259 ococin 31370 ssjo 31409 chsscon3i 31423 shjshsi 31454 |
| Copyright terms: Public domain | W3C validator |