| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > occon | Structured version Visualization version GIF version | ||
| Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| occon | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4003 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) |
| 3 | 2 | ss2rabdv 4026 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 5 | ocval 31255 | . . . 4 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) | |
| 6 | 5 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) |
| 7 | ocval 31255 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) | |
| 8 | 7 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
| 9 | 4, 6, 8 | 3sstr4d 3990 | . 2 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) ⊆ (⊥‘𝐴)) |
| 10 | 9 | ex 412 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℋchba 30894 ·ih csp 30897 ⊥cort 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-oc 31227 |
| This theorem is referenced by: occon2 31263 occon3 31272 ococin 31383 ssjo 31422 chsscon3i 31436 shjshsi 31467 |
| Copyright terms: Public domain | W3C validator |