HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occon Structured version   Visualization version   GIF version

Theorem occon 29056
Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
occon ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴)))

Proof of Theorem occon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4031 . . . . . 6 (𝐴𝐵 → (∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0))
21ralrimivw 3181 . . . . 5 (𝐴𝐵 → ∀𝑥 ∈ ℋ (∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0))
3 ss2rab 4045 . . . . 5 ({𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0} ↔ ∀𝑥 ∈ ℋ (∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0))
42, 3sylibr 236 . . . 4 (𝐴𝐵 → {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
54adantl 484 . . 3 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
6 ocval 29049 . . . 4 (𝐵 ⊆ ℋ → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0})
76ad2antlr 725 . . 3 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0})
8 ocval 29049 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
98ad2antrr 724 . . 3 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
105, 7, 93sstr4d 4012 . 2 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → (⊥‘𝐵) ⊆ (⊥‘𝐴))
1110ex 415 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wral 3136  {crab 3140  wss 3934  cfv 6348  (class class class)co 7148  0cc0 10529  chba 28688   ·ih csp 28691  cort 28699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-hilex 28768
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-oc 29021
This theorem is referenced by:  occon2  29057  occon3  29066  ococin  29177  ssjo  29216  chsscon3i  29230  shjshsi  29261
  Copyright terms: Public domain W3C validator