Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddpwdcv Structured version   Visualization version   GIF version

Theorem oddpwdcv 31759
 Description: Lemma for eulerpart 31786: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
oddpwdcv (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = ((2↑(2nd𝑊)) · (1st𝑊)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐽(𝑧)   𝑊(𝑧)

Proof of Theorem oddpwdcv
StepHypRef Expression
1 1st2nd2 7717 . . 3 (𝑊 ∈ (𝐽 × ℕ0) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
21fveq2d 6654 . 2 (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩))
3 df-ov 7143 . . 3 ((1st𝑊)𝐹(2nd𝑊)) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩)
43a1i 11 . 2 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩))
5 elxp6 7712 . . . 4 (𝑊 ∈ (𝐽 × ℕ0) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0)))
65simprbi 500 . . 3 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0))
7 oveq2 7148 . . . 4 (𝑥 = (1st𝑊) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st𝑊)))
8 oveq2 7148 . . . . 5 (𝑦 = (2nd𝑊) → (2↑𝑦) = (2↑(2nd𝑊)))
98oveq1d 7155 . . . 4 (𝑦 = (2nd𝑊) → ((2↑𝑦) · (1st𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
10 oddpwdc.f . . . 4 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
11 ovex 7173 . . . 4 ((2↑(2nd𝑊)) · (1st𝑊)) ∈ V
127, 9, 10, 11ovmpo 7295 . . 3 (((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
136, 12syl 17 . 2 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
142, 4, 133eqtr2d 2839 1 (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = ((2↑(2nd𝑊)) · (1st𝑊)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {crab 3110  ⟨cop 4531   class class class wbr 5031   × cxp 5518  ‘cfv 6327  (class class class)co 7140   ∈ cmpo 7142  1st c1st 7676  2nd c2nd 7677   · cmul 10538  ℕcn 11632  2c2 11687  ℕ0cn0 11892  ↑cexp 13432   ∥ cdvds 15606 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296  ax-un 7448 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-iota 6286  df-fun 6329  df-fv 6335  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7678  df-2nd 7679 This theorem is referenced by:  eulerpartlemgvv  31780  eulerpartlemgh  31782  eulerpartlemgs2  31784
 Copyright terms: Public domain W3C validator