Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddpwdcv Structured version   Visualization version   GIF version

Theorem oddpwdcv 32322
Description: Lemma for eulerpart 32349: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
oddpwdcv (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = ((2↑(2nd𝑊)) · (1st𝑊)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐽(𝑧)   𝑊(𝑧)

Proof of Theorem oddpwdcv
StepHypRef Expression
1 1st2nd2 7870 . . 3 (𝑊 ∈ (𝐽 × ℕ0) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
21fveq2d 6778 . 2 (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩))
3 df-ov 7278 . . 3 ((1st𝑊)𝐹(2nd𝑊)) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩)
43a1i 11 . 2 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩))
5 elxp6 7865 . . . 4 (𝑊 ∈ (𝐽 × ℕ0) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0)))
65simprbi 497 . . 3 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0))
7 oveq2 7283 . . . 4 (𝑥 = (1st𝑊) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st𝑊)))
8 oveq2 7283 . . . . 5 (𝑦 = (2nd𝑊) → (2↑𝑦) = (2↑(2nd𝑊)))
98oveq1d 7290 . . . 4 (𝑦 = (2nd𝑊) → ((2↑𝑦) · (1st𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
10 oddpwdc.f . . . 4 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
11 ovex 7308 . . . 4 ((2↑(2nd𝑊)) · (1st𝑊)) ∈ V
127, 9, 10, 11ovmpo 7433 . . 3 (((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
136, 12syl 17 . 2 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
142, 4, 133eqtr2d 2784 1 (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = ((2↑(2nd𝑊)) · (1st𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  cop 4567   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830   · cmul 10876  cn 11973  2c2 12028  0cn0 12233  cexp 13782  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832
This theorem is referenced by:  eulerpartlemgvv  32343  eulerpartlemgh  32345  eulerpartlemgs2  32347
  Copyright terms: Public domain W3C validator