![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddpwdcv | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 31213: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.) |
Ref | Expression |
---|---|
oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
Ref | Expression |
---|---|
oddpwdcv | ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7575 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
2 | 1 | fveq2d 6534 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
3 | df-ov 7010 | . . 3 ⊢ ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
5 | elxp6 7570 | . . . 4 ⊢ (𝑊 ∈ (𝐽 × ℕ0) ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0))) | |
6 | 5 | simprbi 497 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0)) |
7 | oveq2 7015 | . . . 4 ⊢ (𝑥 = (1st ‘𝑊) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘𝑊))) | |
8 | oveq2 7015 | . . . . 5 ⊢ (𝑦 = (2nd ‘𝑊) → (2↑𝑦) = (2↑(2nd ‘𝑊))) | |
9 | 8 | oveq1d 7022 | . . . 4 ⊢ (𝑦 = (2nd ‘𝑊) → ((2↑𝑦) · (1st ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
10 | oddpwdc.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
11 | ovex 7039 | . . . 4 ⊢ ((2↑(2nd ‘𝑊)) · (1st ‘𝑊)) ∈ V | |
12 | 7, 9, 10, 11 | ovmpo 7157 | . . 3 ⊢ (((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
14 | 2, 4, 13 | 3eqtr2d 2835 | 1 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 {crab 3107 〈cop 4472 class class class wbr 4956 × cxp 5433 ‘cfv 6217 (class class class)co 7007 ∈ cmpo 7009 1st c1st 7534 2nd c2nd 7535 · cmul 10377 ℕcn 11475 2c2 11529 ℕ0cn0 11734 ↑cexp 13267 ∥ cdvds 15428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-iota 6181 df-fun 6219 df-fv 6225 df-ov 7010 df-oprab 7011 df-mpo 7012 df-1st 7536 df-2nd 7537 |
This theorem is referenced by: eulerpartlemgvv 31207 eulerpartlemgh 31209 eulerpartlemgs2 31211 |
Copyright terms: Public domain | W3C validator |