Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddpwdcv | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 32249: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.) |
Ref | Expression |
---|---|
oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
Ref | Expression |
---|---|
oddpwdcv | ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7843 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
2 | 1 | fveq2d 6760 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
3 | df-ov 7258 | . . 3 ⊢ ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
5 | elxp6 7838 | . . . 4 ⊢ (𝑊 ∈ (𝐽 × ℕ0) ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0))) | |
6 | 5 | simprbi 496 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0)) |
7 | oveq2 7263 | . . . 4 ⊢ (𝑥 = (1st ‘𝑊) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘𝑊))) | |
8 | oveq2 7263 | . . . . 5 ⊢ (𝑦 = (2nd ‘𝑊) → (2↑𝑦) = (2↑(2nd ‘𝑊))) | |
9 | 8 | oveq1d 7270 | . . . 4 ⊢ (𝑦 = (2nd ‘𝑊) → ((2↑𝑦) · (1st ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
10 | oddpwdc.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
11 | ovex 7288 | . . . 4 ⊢ ((2↑(2nd ‘𝑊)) · (1st ‘𝑊)) ∈ V | |
12 | 7, 9, 10, 11 | ovmpo 7411 | . . 3 ⊢ (((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
14 | 2, 4, 13 | 3eqtr2d 2784 | 1 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 〈cop 4564 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 · cmul 10807 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ↑cexp 13710 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: eulerpartlemgvv 32243 eulerpartlemgh 32245 eulerpartlemgs2 32247 |
Copyright terms: Public domain | W3C validator |