| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddpwdcv | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34467: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.) |
| Ref | Expression |
|---|---|
| oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| Ref | Expression |
|---|---|
| oddpwdcv | ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 7969 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
| 2 | 1 | fveq2d 6835 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
| 3 | df-ov 7358 | . . 3 ⊢ ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = (𝐹‘〈(1st ‘𝑊), (2nd ‘𝑊)〉)) |
| 5 | elxp6 7964 | . . . 4 ⊢ (𝑊 ∈ (𝐽 × ℕ0) ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0))) | |
| 6 | 5 | simprbi 496 | . . 3 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0)) |
| 7 | oveq2 7363 | . . . 4 ⊢ (𝑥 = (1st ‘𝑊) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘𝑊))) | |
| 8 | oveq2 7363 | . . . . 5 ⊢ (𝑦 = (2nd ‘𝑊) → (2↑𝑦) = (2↑(2nd ‘𝑊))) | |
| 9 | 8 | oveq1d 7370 | . . . 4 ⊢ (𝑦 = (2nd ‘𝑊) → ((2↑𝑦) · (1st ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
| 10 | oddpwdc.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
| 11 | ovex 7388 | . . . 4 ⊢ ((2↑(2nd ‘𝑊)) · (1st ‘𝑊)) ∈ V | |
| 12 | 7, 9, 10, 11 | ovmpo 7515 | . . 3 ⊢ (((1st ‘𝑊) ∈ 𝐽 ∧ (2nd ‘𝑊) ∈ ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
| 13 | 6, 12 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → ((1st ‘𝑊)𝐹(2nd ‘𝑊)) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
| 14 | 2, 4, 13 | 3eqtr2d 2774 | 1 ⊢ (𝑊 ∈ (𝐽 × ℕ0) → (𝐹‘𝑊) = ((2↑(2nd ‘𝑊)) · (1st ‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 〈cop 4583 class class class wbr 5095 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 2nd c2nd 7929 · cmul 11022 ℕcn 12136 2c2 12191 ℕ0cn0 12392 ↑cexp 13975 ∥ cdvds 16170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 |
| This theorem is referenced by: eulerpartlemgvv 34461 eulerpartlemgh 34463 eulerpartlemgs2 34465 |
| Copyright terms: Public domain | W3C validator |