Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddpwdcv Structured version   Visualization version   GIF version

Theorem oddpwdcv 34320
Description: Lemma for eulerpart 34347: value of the 𝐹 function. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
oddpwdcv (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = ((2↑(2nd𝑊)) · (1st𝑊)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐽(𝑧)   𝑊(𝑧)

Proof of Theorem oddpwdcv
StepHypRef Expression
1 1st2nd2 8069 . . 3 (𝑊 ∈ (𝐽 × ℕ0) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
21fveq2d 6924 . 2 (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩))
3 df-ov 7451 . . 3 ((1st𝑊)𝐹(2nd𝑊)) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩)
43a1i 11 . 2 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = (𝐹‘⟨(1st𝑊), (2nd𝑊)⟩))
5 elxp6 8064 . . . 4 (𝑊 ∈ (𝐽 × ℕ0) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0)))
65simprbi 496 . . 3 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0))
7 oveq2 7456 . . . 4 (𝑥 = (1st𝑊) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st𝑊)))
8 oveq2 7456 . . . . 5 (𝑦 = (2nd𝑊) → (2↑𝑦) = (2↑(2nd𝑊)))
98oveq1d 7463 . . . 4 (𝑦 = (2nd𝑊) → ((2↑𝑦) · (1st𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
10 oddpwdc.f . . . 4 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
11 ovex 7481 . . . 4 ((2↑(2nd𝑊)) · (1st𝑊)) ∈ V
127, 9, 10, 11ovmpo 7610 . . 3 (((1st𝑊) ∈ 𝐽 ∧ (2nd𝑊) ∈ ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
136, 12syl 17 . 2 (𝑊 ∈ (𝐽 × ℕ0) → ((1st𝑊)𝐹(2nd𝑊)) = ((2↑(2nd𝑊)) · (1st𝑊)))
142, 4, 133eqtr2d 2786 1 (𝑊 ∈ (𝐽 × ℕ0) → (𝐹𝑊) = ((2↑(2nd𝑊)) · (1st𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029   · cmul 11189  cn 12293  2c2 12348  0cn0 12553  cexp 14112  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  eulerpartlemgvv  34341  eulerpartlemgh  34343  eulerpartlemgs2  34345
  Copyright terms: Public domain W3C validator