Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv1 Structured version   Visualization version   GIF version

Theorem eulerpartlemsv1 34313
Description: Lemma for eulerpart 34339. Value of the sum of a partition 𝐴. (Contributed by Thierry Arnoux, 26-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsv1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemsv1
StepHypRef Expression
1 eulerpartlems.s . . 3 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
21a1i 11 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘)))
3 simplr 768 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑓 = 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑓 = 𝐴)
43fveq1d 6921 . . . 4 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑓 = 𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝐴𝑘))
54oveq1d 7460 . . 3 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑓 = 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) · 𝑘) = ((𝐴𝑘) · 𝑘))
65sumeq2dv 15746 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑓 = 𝐴) → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
7 id 22 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅))
8 sumex 15732 . . 3 Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) ∈ V
98a1i 11 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) ∈ V)
102, 6, 7, 9fvmptd 7034 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  {cab 2711  Vcvv 3482  cin 3969  cmpt 5252  ccnv 5698  cima 5702  cfv 6572  (class class class)co 7445  m cmap 8880  Fincfn 8999   · cmul 11185  cn 12289  0cn0 12549  Σcsu 15730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-seq 14049  df-sum 15731
This theorem is referenced by:  eulerpartlemsv2  34315  eulerpartlemsf  34316  eulerpartlems  34317  eulerpartlemsv3  34318  eulerpartlemn  34338
  Copyright terms: Public domain W3C validator