| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omessre | Structured version Visualization version GIF version | ||
| Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omessre.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omessre.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omessre.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omessre.re | ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
| omessre.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| omessre | ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13417 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | 0xr 11221 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 4 | pnfxr 11228 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 6 | omessre.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 7 | omessre.x | . . . 4 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 8 | omessre.b | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 9 | omessre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 10 | 8, 9 | sstrd 3957 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| 11 | 6, 7, 10 | omexrcl 46505 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 12 | 6, 7, 10 | omecl 46501 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
| 13 | iccgelb 13363 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘𝐵)) | |
| 14 | 3, 5, 12, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
| 15 | omessre.re | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) | |
| 16 | 15 | rexrd 11224 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
| 17 | 6, 7, 9, 8 | omessle 46496 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
| 18 | 15 | ltpnfd 13081 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) < +∞) |
| 19 | 11, 16, 5, 17, 18 | xrlelttrd 13120 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) < +∞) |
| 20 | 3, 5, 11, 14, 19 | elicod 13356 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,)+∞)) |
| 21 | 1, 20 | sselid 3944 | 1 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 [,)cico 13308 [,]cicc 13309 OutMeascome 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 df-icc 13313 df-ome 46488 |
| This theorem is referenced by: carageniuncllem1 46519 carageniuncllem2 46520 |
| Copyright terms: Public domain | W3C validator |