Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omessre Structured version   Visualization version   GIF version

Theorem omessre 46131
Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omessre.o (𝜑𝑂 ∈ OutMeas)
omessre.x 𝑋 = dom 𝑂
omessre.a (𝜑𝐴𝑋)
omessre.re (𝜑 → (𝑂𝐴) ∈ ℝ)
omessre.b (𝜑𝐵𝐴)
Assertion
Ref Expression
omessre (𝜑 → (𝑂𝐵) ∈ ℝ)

Proof of Theorem omessre
StepHypRef Expression
1 rge0ssre 13487 . 2 (0[,)+∞) ⊆ ℝ
2 0xr 11311 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
4 pnfxr 11318 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
6 omessre.o . . . 4 (𝜑𝑂 ∈ OutMeas)
7 omessre.x . . . 4 𝑋 = dom 𝑂
8 omessre.b . . . . 5 (𝜑𝐵𝐴)
9 omessre.a . . . . 5 (𝜑𝐴𝑋)
108, 9sstrd 3990 . . . 4 (𝜑𝐵𝑋)
116, 7, 10omexrcl 46128 . . 3 (𝜑 → (𝑂𝐵) ∈ ℝ*)
126, 7, 10omecl 46124 . . . 4 (𝜑 → (𝑂𝐵) ∈ (0[,]+∞))
13 iccgelb 13434 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂𝐵))
143, 5, 12, 13syl3anc 1368 . . 3 (𝜑 → 0 ≤ (𝑂𝐵))
15 omessre.re . . . . 5 (𝜑 → (𝑂𝐴) ∈ ℝ)
1615rexrd 11314 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ*)
176, 7, 9, 8omessle 46119 . . . 4 (𝜑 → (𝑂𝐵) ≤ (𝑂𝐴))
1815ltpnfd 13155 . . . 4 (𝜑 → (𝑂𝐴) < +∞)
1911, 16, 5, 17, 18xrlelttrd 13193 . . 3 (𝜑 → (𝑂𝐵) < +∞)
203, 5, 11, 14, 19elicod 13428 . 2 (𝜑 → (𝑂𝐵) ∈ (0[,)+∞))
211, 20sselid 3977 1 (𝜑 → (𝑂𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3947   cuni 4913   class class class wbr 5153  dom cdm 5682  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  +∞cpnf 11295  *cxr 11297  cle 11299  [,)cico 13380  [,]cicc 13381  OutMeascome 46110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-addrcl 11219  ax-rnegex 11229  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-ico 13384  df-icc 13385  df-ome 46111
This theorem is referenced by:  carageniuncllem1  46142  carageniuncllem2  46143
  Copyright terms: Public domain W3C validator