Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omessre | Structured version Visualization version GIF version |
Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omessre.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omessre.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omessre.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
omessre.re | ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
omessre.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
omessre | ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13188 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 11022 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
4 | pnfxr 11029 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
6 | omessre.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
7 | omessre.x | . . . 4 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | omessre.b | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
9 | omessre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
10 | 8, 9 | sstrd 3931 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
11 | 6, 7, 10 | omexrcl 44045 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
12 | 6, 7, 10 | omecl 44041 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
13 | iccgelb 13135 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘𝐵)) | |
14 | 3, 5, 12, 13 | syl3anc 1370 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
15 | omessre.re | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) | |
16 | 15 | rexrd 11025 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
17 | 6, 7, 9, 8 | omessle 44036 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
18 | 15 | ltpnfd 12857 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) < +∞) |
19 | 11, 16, 5, 17, 18 | xrlelttrd 12894 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) < +∞) |
20 | 3, 5, 11, 14, 19 | elicod 13129 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,)+∞)) |
21 | 1, 20 | sselid 3919 | 1 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 [,)cico 13081 [,]cicc 13082 OutMeascome 44027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ico 13085 df-icc 13086 df-ome 44028 |
This theorem is referenced by: carageniuncllem1 44059 carageniuncllem2 44060 |
Copyright terms: Public domain | W3C validator |