![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omessre | Structured version Visualization version GIF version |
Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omessre.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omessre.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omessre.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
omessre.re | ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
omessre.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
omessre | ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13432 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 11260 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
4 | pnfxr 11267 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
6 | omessre.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
7 | omessre.x | . . . 4 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | omessre.b | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
9 | omessre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
10 | 8, 9 | sstrd 3992 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
11 | 6, 7, 10 | omexrcl 45213 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
12 | 6, 7, 10 | omecl 45209 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
13 | iccgelb 13379 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘𝐵)) | |
14 | 3, 5, 12, 13 | syl3anc 1371 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
15 | omessre.re | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) | |
16 | 15 | rexrd 11263 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
17 | 6, 7, 9, 8 | omessle 45204 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
18 | 15 | ltpnfd 13100 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) < +∞) |
19 | 11, 16, 5, 17, 18 | xrlelttrd 13138 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) < +∞) |
20 | 3, 5, 11, 14, 19 | elicod 13373 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,)+∞)) |
21 | 1, 20 | sselid 3980 | 1 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ∪ cuni 4908 class class class wbr 5148 dom cdm 5676 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 0cc0 11109 +∞cpnf 11244 ℝ*cxr 11246 ≤ cle 11248 [,)cico 13325 [,]cicc 13326 OutMeascome 45195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-addrcl 11170 ax-rnegex 11180 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-ico 13329 df-icc 13330 df-ome 45196 |
This theorem is referenced by: carageniuncllem1 45227 carageniuncllem2 45228 |
Copyright terms: Public domain | W3C validator |