Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omessre Structured version   Visualization version   GIF version

Theorem omessre 44048
Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omessre.o (𝜑𝑂 ∈ OutMeas)
omessre.x 𝑋 = dom 𝑂
omessre.a (𝜑𝐴𝑋)
omessre.re (𝜑 → (𝑂𝐴) ∈ ℝ)
omessre.b (𝜑𝐵𝐴)
Assertion
Ref Expression
omessre (𝜑 → (𝑂𝐵) ∈ ℝ)

Proof of Theorem omessre
StepHypRef Expression
1 rge0ssre 13188 . 2 (0[,)+∞) ⊆ ℝ
2 0xr 11022 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
4 pnfxr 11029 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
6 omessre.o . . . 4 (𝜑𝑂 ∈ OutMeas)
7 omessre.x . . . 4 𝑋 = dom 𝑂
8 omessre.b . . . . 5 (𝜑𝐵𝐴)
9 omessre.a . . . . 5 (𝜑𝐴𝑋)
108, 9sstrd 3931 . . . 4 (𝜑𝐵𝑋)
116, 7, 10omexrcl 44045 . . 3 (𝜑 → (𝑂𝐵) ∈ ℝ*)
126, 7, 10omecl 44041 . . . 4 (𝜑 → (𝑂𝐵) ∈ (0[,]+∞))
13 iccgelb 13135 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂𝐵))
143, 5, 12, 13syl3anc 1370 . . 3 (𝜑 → 0 ≤ (𝑂𝐵))
15 omessre.re . . . . 5 (𝜑 → (𝑂𝐴) ∈ ℝ)
1615rexrd 11025 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ*)
176, 7, 9, 8omessle 44036 . . . 4 (𝜑 → (𝑂𝐵) ≤ (𝑂𝐴))
1815ltpnfd 12857 . . . 4 (𝜑 → (𝑂𝐴) < +∞)
1911, 16, 5, 17, 18xrlelttrd 12894 . . 3 (𝜑 → (𝑂𝐵) < +∞)
203, 5, 11, 14, 19elicod 13129 . 2 (𝜑 → (𝑂𝐵) ∈ (0[,)+∞))
211, 20sselid 3919 1 (𝜑 → (𝑂𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887   cuni 4839   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008  cle 11010  [,)cico 13081  [,]cicc 13082  OutMeascome 44027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-addrcl 10932  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-icc 13086  df-ome 44028
This theorem is referenced by:  carageniuncllem1  44059  carageniuncllem2  44060
  Copyright terms: Public domain W3C validator