![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omessre | Structured version Visualization version GIF version |
Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omessre.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omessre.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omessre.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
omessre.re | ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
omessre.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
omessre | ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13487 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 11311 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
4 | pnfxr 11318 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
6 | omessre.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
7 | omessre.x | . . . 4 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | omessre.b | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
9 | omessre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
10 | 8, 9 | sstrd 3990 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
11 | 6, 7, 10 | omexrcl 46128 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
12 | 6, 7, 10 | omecl 46124 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
13 | iccgelb 13434 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘𝐵)) | |
14 | 3, 5, 12, 13 | syl3anc 1368 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
15 | omessre.re | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) | |
16 | 15 | rexrd 11314 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
17 | 6, 7, 9, 8 | omessle 46119 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
18 | 15 | ltpnfd 13155 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) < +∞) |
19 | 11, 16, 5, 17, 18 | xrlelttrd 13193 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) < +∞) |
20 | 3, 5, 11, 14, 19 | elicod 13428 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,)+∞)) |
21 | 1, 20 | sselid 3977 | 1 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ∪ cuni 4913 class class class wbr 5153 dom cdm 5682 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 0cc0 11158 +∞cpnf 11295 ℝ*cxr 11297 ≤ cle 11299 [,)cico 13380 [,]cicc 13381 OutMeascome 46110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-addrcl 11219 ax-rnegex 11229 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-ico 13384 df-icc 13385 df-ome 46111 |
This theorem is referenced by: carageniuncllem1 46142 carageniuncllem2 46143 |
Copyright terms: Public domain | W3C validator |