| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omessre | Structured version Visualization version GIF version | ||
| Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omessre.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omessre.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omessre.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omessre.re | ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
| omessre.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| omessre | ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13356 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | 0xr 11159 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 4 | pnfxr 11166 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 6 | omessre.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 7 | omessre.x | . . . 4 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 8 | omessre.b | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 9 | omessre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 10 | 8, 9 | sstrd 3940 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| 11 | 6, 7, 10 | omexrcl 46553 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 12 | 6, 7, 10 | omecl 46549 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
| 13 | iccgelb 13302 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘𝐵) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘𝐵)) | |
| 14 | 3, 5, 12, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
| 15 | omessre.re | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) | |
| 16 | 15 | rexrd 11162 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
| 17 | 6, 7, 9, 8 | omessle 46544 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
| 18 | 15 | ltpnfd 13020 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) < +∞) |
| 19 | 11, 16, 5, 17, 18 | xrlelttrd 13059 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) < +∞) |
| 20 | 3, 5, 11, 14, 19 | elicod 13295 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,)+∞)) |
| 21 | 1, 20 | sselid 3927 | 1 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4856 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 +∞cpnf 11143 ℝ*cxr 11145 ≤ cle 11147 [,)cico 13247 [,]cicc 13248 OutMeascome 46535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 df-icc 13252 df-ome 46536 |
| This theorem is referenced by: carageniuncllem1 46567 carageniuncllem2 46568 |
| Copyright terms: Public domain | W3C validator |