![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omess0 | Structured version Visualization version GIF version |
Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
omess0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omess0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omess0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
omess0.z | ⊢ (𝜑 → (𝑂‘𝐴) = 0) |
omess0.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
omess0 | ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omess0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | omess0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | omess0.s | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | omess0.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 3, 4 | sstrd 3862 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
6 | 1, 2, 5 | omexrcl 42245 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
7 | 0xr 10485 | . . 3 ⊢ 0 ∈ ℝ* | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
9 | 1, 2, 4, 3 | omessle 42236 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
10 | omess0.z | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) = 0) | |
11 | 9, 10 | breqtrd 4951 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ≤ 0) |
12 | 1, 2, 5 | omege0 42271 | . 2 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
13 | 6, 8, 11, 12 | xrletrid 12363 | 1 ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ⊆ wss 3823 ∪ cuni 4708 dom cdm 5403 ‘cfv 6185 0cc0 10333 ℝ*cxr 10471 ≤ cle 10473 OutMeascome 42227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-addrcl 10394 ax-rnegex 10404 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-icc 12559 df-ome 42228 |
This theorem is referenced by: caragencmpl 42273 voncmpl 42359 |
Copyright terms: Public domain | W3C validator |