Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omess0 Structured version   Visualization version   GIF version

Theorem omess0 46490
Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
omess0.o (𝜑𝑂 ∈ OutMeas)
omess0.x 𝑋 = dom 𝑂
omess0.a (𝜑𝐴𝑋)
omess0.z (𝜑 → (𝑂𝐴) = 0)
omess0.s (𝜑𝐵𝐴)
Assertion
Ref Expression
omess0 (𝜑 → (𝑂𝐵) = 0)

Proof of Theorem omess0
StepHypRef Expression
1 omess0.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 omess0.x . . 3 𝑋 = dom 𝑂
3 omess0.s . . . 4 (𝜑𝐵𝐴)
4 omess0.a . . . 4 (𝜑𝐴𝑋)
53, 4sstrd 4006 . . 3 (𝜑𝐵𝑋)
61, 2, 5omexrcl 46463 . 2 (𝜑 → (𝑂𝐵) ∈ ℝ*)
7 0xr 11306 . . 3 0 ∈ ℝ*
87a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
91, 2, 4, 3omessle 46454 . . 3 (𝜑 → (𝑂𝐵) ≤ (𝑂𝐴))
10 omess0.z . . 3 (𝜑 → (𝑂𝐴) = 0)
119, 10breqtrd 5174 . 2 (𝜑 → (𝑂𝐵) ≤ 0)
121, 2, 5omege0 46489 . 2 (𝜑 → 0 ≤ (𝑂𝐵))
136, 8, 11, 12xrletrid 13194 1 (𝜑 → (𝑂𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963   cuni 4912  dom cdm 5689  cfv 6563  0cc0 11153  *cxr 11292  cle 11294  OutMeascome 46445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-addrcl 11214  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-icc 13391  df-ome 46446
This theorem is referenced by:  caragencmpl  46491  voncmpl  46577
  Copyright terms: Public domain W3C validator