| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omess0 | Structured version Visualization version GIF version | ||
| Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| omess0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omess0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omess0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omess0.z | ⊢ (𝜑 → (𝑂‘𝐴) = 0) |
| omess0.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| omess0 | ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omess0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omess0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | omess0.s | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 4 | omess0.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 3, 4 | sstrd 3974 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| 6 | 1, 2, 5 | omexrcl 46503 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 7 | 0xr 11287 | . . 3 ⊢ 0 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 9 | 1, 2, 4, 3 | omessle 46494 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
| 10 | omess0.z | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) = 0) | |
| 11 | 9, 10 | breqtrd 5150 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ≤ 0) |
| 12 | 1, 2, 5 | omege0 46529 | . 2 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
| 13 | 6, 8, 11, 12 | xrletrid 13176 | 1 ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 dom cdm 5659 ‘cfv 6536 0cc0 11134 ℝ*cxr 11273 ≤ cle 11275 OutMeascome 46485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-rnegex 11205 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-icc 13374 df-ome 46486 |
| This theorem is referenced by: caragencmpl 46531 voncmpl 46617 |
| Copyright terms: Public domain | W3C validator |