![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omess0 | Structured version Visualization version GIF version |
Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
omess0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omess0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omess0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
omess0.z | ⊢ (𝜑 → (𝑂‘𝐴) = 0) |
omess0.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
omess0 | ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omess0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | omess0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | omess0.s | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | omess0.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 3, 4 | sstrd 3993 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
6 | 1, 2, 5 | omexrcl 45271 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
7 | 0xr 11261 | . . 3 ⊢ 0 ∈ ℝ* | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
9 | 1, 2, 4, 3 | omessle 45262 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
10 | omess0.z | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) = 0) | |
11 | 9, 10 | breqtrd 5175 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ≤ 0) |
12 | 1, 2, 5 | omege0 45297 | . 2 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
13 | 6, 8, 11, 12 | xrletrid 13134 | 1 ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 ∪ cuni 4909 dom cdm 5677 ‘cfv 6544 0cc0 11110 ℝ*cxr 11247 ≤ cle 11249 OutMeascome 45253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-addrcl 11171 ax-rnegex 11181 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-icc 13331 df-ome 45254 |
This theorem is referenced by: caragencmpl 45299 voncmpl 45385 |
Copyright terms: Public domain | W3C validator |