| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omess0 | Structured version Visualization version GIF version | ||
| Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| omess0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omess0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omess0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omess0.z | ⊢ (𝜑 → (𝑂‘𝐴) = 0) |
| omess0.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| omess0 | ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omess0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omess0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | omess0.s | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 4 | omess0.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 3, 4 | sstrd 3945 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| 6 | 1, 2, 5 | omexrcl 46551 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 7 | 0xr 11159 | . . 3 ⊢ 0 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 9 | 1, 2, 4, 3 | omessle 46542 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
| 10 | omess0.z | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) = 0) | |
| 11 | 9, 10 | breqtrd 5117 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ≤ 0) |
| 12 | 1, 2, 5 | omege0 46577 | . 2 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
| 13 | 6, 8, 11, 12 | xrletrid 13054 | 1 ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 dom cdm 5616 ‘cfv 6481 0cc0 11006 ℝ*cxr 11145 ≤ cle 11147 OutMeascome 46533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 df-ome 46534 |
| This theorem is referenced by: caragencmpl 46579 voncmpl 46665 |
| Copyright terms: Public domain | W3C validator |