| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omess0 | Structured version Visualization version GIF version | ||
| Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| omess0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omess0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omess0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omess0.z | ⊢ (𝜑 → (𝑂‘𝐴) = 0) |
| omess0.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| omess0 | ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omess0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omess0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | omess0.s | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 4 | omess0.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 3, 4 | sstrd 3941 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| 6 | 1, 2, 5 | omexrcl 46632 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 7 | 0xr 11168 | . . 3 ⊢ 0 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 9 | 1, 2, 4, 3 | omessle 46623 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
| 10 | omess0.z | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) = 0) | |
| 11 | 9, 10 | breqtrd 5121 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ≤ 0) |
| 12 | 1, 2, 5 | omege0 46658 | . 2 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
| 13 | 6, 8, 11, 12 | xrletrid 13058 | 1 ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4860 dom cdm 5621 ‘cfv 6488 0cc0 11015 ℝ*cxr 11154 ≤ cle 11156 OutMeascome 46614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-addrcl 11076 ax-rnegex 11086 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-icc 13256 df-ome 46615 |
| This theorem is referenced by: caragencmpl 46660 voncmpl 46746 |
| Copyright terms: Public domain | W3C validator |