Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omess0 Structured version   Visualization version   GIF version

Theorem omess0 46519
Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
omess0.o (𝜑𝑂 ∈ OutMeas)
omess0.x 𝑋 = dom 𝑂
omess0.a (𝜑𝐴𝑋)
omess0.z (𝜑 → (𝑂𝐴) = 0)
omess0.s (𝜑𝐵𝐴)
Assertion
Ref Expression
omess0 (𝜑 → (𝑂𝐵) = 0)

Proof of Theorem omess0
StepHypRef Expression
1 omess0.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 omess0.x . . 3 𝑋 = dom 𝑂
3 omess0.s . . . 4 (𝜑𝐵𝐴)
4 omess0.a . . . 4 (𝜑𝐴𝑋)
53, 4sstrd 3948 . . 3 (𝜑𝐵𝑋)
61, 2, 5omexrcl 46492 . 2 (𝜑 → (𝑂𝐵) ∈ ℝ*)
7 0xr 11181 . . 3 0 ∈ ℝ*
87a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
91, 2, 4, 3omessle 46483 . . 3 (𝜑 → (𝑂𝐵) ≤ (𝑂𝐴))
10 omess0.z . . 3 (𝜑 → (𝑂𝐴) = 0)
119, 10breqtrd 5121 . 2 (𝜑 → (𝑂𝐵) ≤ 0)
121, 2, 5omege0 46518 . 2 (𝜑 → 0 ≤ (𝑂𝐵))
136, 8, 11, 12xrletrid 13075 1 (𝜑 → (𝑂𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905   cuni 4861  dom cdm 5623  cfv 6486  0cc0 11028  *cxr 11167  cle 11169  OutMeascome 46474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-addrcl 11089  ax-rnegex 11099  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-icc 13273  df-ome 46475
This theorem is referenced by:  caragencmpl  46520  voncmpl  46606
  Copyright terms: Public domain W3C validator