| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omess0 | Structured version Visualization version GIF version | ||
| Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| omess0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omess0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omess0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omess0.z | ⊢ (𝜑 → (𝑂‘𝐴) = 0) |
| omess0.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| omess0 | ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omess0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omess0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | omess0.s | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 4 | omess0.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 3, 4 | sstrd 3948 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| 6 | 1, 2, 5 | omexrcl 46492 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 7 | 0xr 11181 | . . 3 ⊢ 0 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 9 | 1, 2, 4, 3 | omessle 46483 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
| 10 | omess0.z | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) = 0) | |
| 11 | 9, 10 | breqtrd 5121 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ≤ 0) |
| 12 | 1, 2, 5 | omege0 46518 | . 2 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
| 13 | 6, 8, 11, 12 | xrletrid 13075 | 1 ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 dom cdm 5623 ‘cfv 6486 0cc0 11028 ℝ*cxr 11167 ≤ cle 11169 OutMeascome 46474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-icc 13273 df-ome 46475 |
| This theorem is referenced by: caragencmpl 46520 voncmpl 46606 |
| Copyright terms: Public domain | W3C validator |