MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressinbas Structured version   Visualization version   GIF version

Theorem ressinbas 17156
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressinbas (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressinbas
StepHypRef Expression
1 elex 3457 . 2 (𝐴𝑋𝐴 ∈ V)
2 eqid 2731 . . . . . . 7 (𝑊s 𝐴) = (𝑊s 𝐴)
3 ressid.1 . . . . . . 7 𝐵 = (Base‘𝑊)
42, 3ressid2 17145 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = 𝑊)
5 ssid 3952 . . . . . . . 8 𝐵𝐵
6 incom 4156 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
7 dfss2 3915 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
87biimpi 216 . . . . . . . . 9 (𝐵𝐴 → (𝐵𝐴) = 𝐵)
96, 8eqtrid 2778 . . . . . . . 8 (𝐵𝐴 → (𝐴𝐵) = 𝐵)
105, 9sseqtrrid 3973 . . . . . . 7 (𝐵𝐴𝐵 ⊆ (𝐴𝐵))
11 elex 3457 . . . . . . 7 (𝑊 ∈ V → 𝑊 ∈ V)
12 inex1g 5255 . . . . . . 7 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
13 eqid 2731 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
1413, 3ressid2 17145 . . . . . . 7 ((𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
1510, 11, 12, 14syl3an 1160 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
164, 15eqtr4d 2769 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
17163expb 1120 . . . 4 ((𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
18 inass 4175 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐵) = (𝐴 ∩ (𝐵𝐵))
19 inidm 4174 . . . . . . . . . 10 (𝐵𝐵) = 𝐵
2019ineq2i 4164 . . . . . . . . 9 (𝐴 ∩ (𝐵𝐵)) = (𝐴𝐵)
2118, 20eqtr2i 2755 . . . . . . . 8 (𝐴𝐵) = ((𝐴𝐵) ∩ 𝐵)
2221opeq2i 4826 . . . . . . 7 ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩
2322oveq2i 7357 . . . . . 6 (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩)
242, 3ressval2 17146 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
25 inss1 4184 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
26 sstr 3938 . . . . . . . . 9 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → 𝐵𝐴)
2725, 26mpan2 691 . . . . . . . 8 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
2827con3i 154 . . . . . . 7 𝐵𝐴 → ¬ 𝐵 ⊆ (𝐴𝐵))
2913, 3ressval2 17146 . . . . . . 7 ((¬ 𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3028, 11, 12, 29syl3an 1160 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3123, 24, 303eqtr4a 2792 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
32313expb 1120 . . . 4 ((¬ 𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3317, 32pm2.61ian 811 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
34 reldmress 17143 . . . . . 6 Rel dom ↾s
3534ovprc1 7385 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
3634ovprc1 7385 . . . . 5 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
3735, 36eqtr4d 2769 . . . 4 𝑊 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3837adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3933, 38pm2.61ian 811 . 2 (𝐴 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
401, 39syl 17 1 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  c0 4280  cop 4579  cfv 6481  (class class class)co 7346   sSet csts 17074  ndxcnx 17104  Basecbs 17120  s cress 17141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-ress 17142
This theorem is referenced by:  ressress  17158  rescabs  17740  resscat  17759  funcres2c  17810  ressffth  17847  suborng  20791  cphsubrglem  25104
  Copyright terms: Public domain W3C validator