MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressinbas Structured version   Visualization version   GIF version

Theorem ressinbas 17290
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressinbas (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressinbas
StepHypRef Expression
1 elex 3498 . 2 (𝐴𝑋𝐴 ∈ V)
2 eqid 2734 . . . . . . 7 (𝑊s 𝐴) = (𝑊s 𝐴)
3 ressid.1 . . . . . . 7 𝐵 = (Base‘𝑊)
42, 3ressid2 17277 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = 𝑊)
5 ssid 4017 . . . . . . . 8 𝐵𝐵
6 incom 4216 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
7 dfss2 3980 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
87biimpi 216 . . . . . . . . 9 (𝐵𝐴 → (𝐵𝐴) = 𝐵)
96, 8eqtrid 2786 . . . . . . . 8 (𝐵𝐴 → (𝐴𝐵) = 𝐵)
105, 9sseqtrrid 4048 . . . . . . 7 (𝐵𝐴𝐵 ⊆ (𝐴𝐵))
11 elex 3498 . . . . . . 7 (𝑊 ∈ V → 𝑊 ∈ V)
12 inex1g 5324 . . . . . . 7 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
13 eqid 2734 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
1413, 3ressid2 17277 . . . . . . 7 ((𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
1510, 11, 12, 14syl3an 1159 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
164, 15eqtr4d 2777 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
17163expb 1119 . . . 4 ((𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
18 inass 4235 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐵) = (𝐴 ∩ (𝐵𝐵))
19 inidm 4234 . . . . . . . . . 10 (𝐵𝐵) = 𝐵
2019ineq2i 4224 . . . . . . . . 9 (𝐴 ∩ (𝐵𝐵)) = (𝐴𝐵)
2118, 20eqtr2i 2763 . . . . . . . 8 (𝐴𝐵) = ((𝐴𝐵) ∩ 𝐵)
2221opeq2i 4881 . . . . . . 7 ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩
2322oveq2i 7441 . . . . . 6 (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩)
242, 3ressval2 17278 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
25 inss1 4244 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
26 sstr 4003 . . . . . . . . 9 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → 𝐵𝐴)
2725, 26mpan2 691 . . . . . . . 8 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
2827con3i 154 . . . . . . 7 𝐵𝐴 → ¬ 𝐵 ⊆ (𝐴𝐵))
2913, 3ressval2 17278 . . . . . . 7 ((¬ 𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3028, 11, 12, 29syl3an 1159 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3123, 24, 303eqtr4a 2800 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
32313expb 1119 . . . 4 ((¬ 𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3317, 32pm2.61ian 812 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
34 reldmress 17275 . . . . . 6 Rel dom ↾s
3534ovprc1 7469 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
3634ovprc1 7469 . . . . 5 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
3735, 36eqtr4d 2777 . . . 4 𝑊 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3837adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3933, 38pm2.61ian 812 . 2 (𝐴 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
401, 39syl 17 1 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  cin 3961  wss 3962  c0 4338  cop 4636  cfv 6562  (class class class)co 7430   sSet csts 17196  ndxcnx 17226  Basecbs 17244  s cress 17273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-ress 17274
This theorem is referenced by:  ressress  17293  rescabs  17882  rescabsOLD  17883  resscat  17902  funcres2c  17954  ressffth  17991  cphsubrglem  25224  suborng  33324
  Copyright terms: Public domain W3C validator