MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressinbas Structured version   Visualization version   GIF version

Theorem ressinbas 17304
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressinbas (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressinbas
StepHypRef Expression
1 elex 3509 . 2 (𝐴𝑋𝐴 ∈ V)
2 eqid 2740 . . . . . . 7 (𝑊s 𝐴) = (𝑊s 𝐴)
3 ressid.1 . . . . . . 7 𝐵 = (Base‘𝑊)
42, 3ressid2 17291 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = 𝑊)
5 ssid 4031 . . . . . . . 8 𝐵𝐵
6 incom 4230 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
7 dfss2 3994 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
87biimpi 216 . . . . . . . . 9 (𝐵𝐴 → (𝐵𝐴) = 𝐵)
96, 8eqtrid 2792 . . . . . . . 8 (𝐵𝐴 → (𝐴𝐵) = 𝐵)
105, 9sseqtrrid 4062 . . . . . . 7 (𝐵𝐴𝐵 ⊆ (𝐴𝐵))
11 elex 3509 . . . . . . 7 (𝑊 ∈ V → 𝑊 ∈ V)
12 inex1g 5337 . . . . . . 7 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
13 eqid 2740 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
1413, 3ressid2 17291 . . . . . . 7 ((𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
1510, 11, 12, 14syl3an 1160 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
164, 15eqtr4d 2783 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
17163expb 1120 . . . 4 ((𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
18 inass 4249 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐵) = (𝐴 ∩ (𝐵𝐵))
19 inidm 4248 . . . . . . . . . 10 (𝐵𝐵) = 𝐵
2019ineq2i 4238 . . . . . . . . 9 (𝐴 ∩ (𝐵𝐵)) = (𝐴𝐵)
2118, 20eqtr2i 2769 . . . . . . . 8 (𝐴𝐵) = ((𝐴𝐵) ∩ 𝐵)
2221opeq2i 4901 . . . . . . 7 ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩
2322oveq2i 7459 . . . . . 6 (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩)
242, 3ressval2 17292 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
25 inss1 4258 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
26 sstr 4017 . . . . . . . . 9 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → 𝐵𝐴)
2725, 26mpan2 690 . . . . . . . 8 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
2827con3i 154 . . . . . . 7 𝐵𝐴 → ¬ 𝐵 ⊆ (𝐴𝐵))
2913, 3ressval2 17292 . . . . . . 7 ((¬ 𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3028, 11, 12, 29syl3an 1160 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3123, 24, 303eqtr4a 2806 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
32313expb 1120 . . . 4 ((¬ 𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3317, 32pm2.61ian 811 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
34 reldmress 17289 . . . . . 6 Rel dom ↾s
3534ovprc1 7487 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
3634ovprc1 7487 . . . . 5 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
3735, 36eqtr4d 2783 . . . 4 𝑊 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3837adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3933, 38pm2.61ian 811 . 2 (𝐴 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
401, 39syl 17 1 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976  c0 4352  cop 4654  cfv 6573  (class class class)co 7448   sSet csts 17210  ndxcnx 17240  Basecbs 17258  s cress 17287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-ress 17288
This theorem is referenced by:  ressress  17307  rescabs  17896  rescabsOLD  17897  resscat  17916  funcres2c  17968  ressffth  18005  cphsubrglem  25230  suborng  33310
  Copyright terms: Public domain W3C validator