MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2e Structured version   Visualization version   GIF version

Theorem wlk2v2e 29399
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
wlk2v2e.g 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
Assertion
Ref Expression
wlk2v2e 𝐹(Walks‘𝐺)𝑃

Proof of Theorem wlk2v2e
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlk2v2e.g . . . . 5 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
2 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
32opeq2i 4876 . . . . 5 ⟨{𝑋, 𝑌}, 𝐼⟩ = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
41, 3eqtri 2760 . . . 4 𝐺 = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
5 wlk2v2e.x . . . . 5 𝑋 ∈ V
6 wlk2v2e.y . . . . 5 𝑌 ∈ V
7 uspgr2v1e2w 28497 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph)
85, 6, 7mp2an 690 . . . 4 ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph
94, 8eqeltri 2829 . . 3 𝐺 ∈ USPGraph
10 uspgrupgr 28425 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
119, 10ax-mp 5 . 2 𝐺 ∈ UPGraph
12 wlk2v2e.f . . . . 5 𝐹 = ⟨“00”⟩
132, 12wlk2v2elem1 29397 . . . 4 𝐹 ∈ Word dom 𝐼
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
155prid1 4765 . . . . . . . . 9 𝑋 ∈ {𝑋, 𝑌}
166prid2 4766 . . . . . . . . 9 𝑌 ∈ {𝑋, 𝑌}
17 s3cl 14826 . . . . . . . . 9 ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌})
1815, 16, 15, 17mp3an 1461 . . . . . . . 8 ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌}
1914, 18eqeltri 2829 . . . . . . 7 𝑃 ∈ Word {𝑋, 𝑌}
20 wrdf 14465 . . . . . . 7 (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2119, 20ax-mp 5 . . . . . 6 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}
2214fveq2i 6891 . . . . . . . . 9 (♯‘𝑃) = (♯‘⟨“𝑋𝑌𝑋”⟩)
23 s3len 14841 . . . . . . . . 9 (♯‘⟨“𝑋𝑌𝑋”⟩) = 3
2422, 23eqtr2i 2761 . . . . . . . 8 3 = (♯‘𝑃)
2524oveq2i 7416 . . . . . . 7 (0..^3) = (0..^(♯‘𝑃))
2625feq2i 6706 . . . . . 6 (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2721, 26mpbir 230 . . . . 5 𝑃:(0..^3)⟶{𝑋, 𝑌}
2812fveq2i 6891 . . . . . . . . 9 (♯‘𝐹) = (♯‘⟨“00”⟩)
29 s2len 14836 . . . . . . . . 9 (♯‘⟨“00”⟩) = 2
3028, 29eqtri 2760 . . . . . . . 8 (♯‘𝐹) = 2
3130oveq2i 7416 . . . . . . 7 (0...(♯‘𝐹)) = (0...2)
32 3z 12591 . . . . . . . . 9 3 ∈ ℤ
33 fzoval 13629 . . . . . . . . 9 (3 ∈ ℤ → (0..^3) = (0...(3 − 1)))
3432, 33ax-mp 5 . . . . . . . 8 (0..^3) = (0...(3 − 1))
35 3m1e2 12336 . . . . . . . . 9 (3 − 1) = 2
3635oveq2i 7416 . . . . . . . 8 (0...(3 − 1)) = (0...2)
3734, 36eqtr2i 2761 . . . . . . 7 (0...2) = (0..^3)
3831, 37eqtri 2760 . . . . . 6 (0...(♯‘𝐹)) = (0..^3)
3938feq2i 6706 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌})
4027, 39mpbir 230 . . . 4 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌}
412, 12, 5, 6, 14wlk2v2elem2 29398 . . . 4 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
4213, 40, 413pm3.2i 1339 . . 3 (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
431fveq2i 6891 . . . . 5 (Vtx‘𝐺) = (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩)
44 prex 5431 . . . . . 6 {𝑋, 𝑌} ∈ V
45 s1cli 14551 . . . . . . 7 ⟨“{𝑋, 𝑌}”⟩ ∈ Word V
462, 45eqeltri 2829 . . . . . 6 𝐼 ∈ Word V
47 opvtxfv 28253 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌})
4844, 46, 47mp2an 690 . . . . 5 (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌}
4943, 48eqtr2i 2761 . . . 4 {𝑋, 𝑌} = (Vtx‘𝐺)
501fveq2i 6891 . . . . 5 (iEdg‘𝐺) = (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩)
51 opiedgfv 28256 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼)
5244, 46, 51mp2an 690 . . . . 5 (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼
5350, 52eqtr2i 2761 . . . 4 𝐼 = (iEdg‘𝐺)
5449, 53upgriswlk 28887 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5542, 54mpbiri 257 . 2 (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃)
5611, 55ax-mp 5 1 𝐹(Walks‘𝐺)𝑃
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  {cpr 4629  cop 4633   class class class wbr 5147  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  cmin 11440  2c2 12263  3c3 12264  cz 12554  ...cfz 13480  ..^cfzo 13623  chash 14286  Word cword 14460  ⟨“cs1 14541  ⟨“cs2 14788  ⟨“cs3 14789  Vtxcvtx 28245  iEdgciedg 28246  UPGraphcupgr 28329  USPGraphcuspgr 28397  Walkscwlks 28842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-vtx 28247  df-iedg 28248  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-uspgr 28399  df-wlks 28845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator