| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlk2v2e | Structured version Visualization version GIF version | ||
| Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
| wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
| wlk2v2e.x | ⊢ 𝑋 ∈ V |
| wlk2v2e.y | ⊢ 𝑌 ∈ V |
| wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
| wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
| Ref | Expression |
|---|---|
| wlk2v2e | ⊢ 𝐹(Walks‘𝐺)𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.g | . . . . 5 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 | |
| 2 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
| 3 | 2 | opeq2i 4828 | . . . . 5 ⊢ 〈{𝑋, 𝑌}, 𝐼〉 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
| 4 | 1, 3 | eqtri 2756 | . . . 4 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
| 5 | wlk2v2e.x | . . . . 5 ⊢ 𝑋 ∈ V | |
| 6 | wlk2v2e.y | . . . . 5 ⊢ 𝑌 ∈ V | |
| 7 | uspgr2v1e2w 29231 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . 4 ⊢ 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph |
| 9 | 4, 8 | eqeltri 2829 | . . 3 ⊢ 𝐺 ∈ USPGraph |
| 10 | uspgrupgr 29158 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ 𝐺 ∈ UPGraph |
| 12 | wlk2v2e.f | . . . . 5 ⊢ 𝐹 = 〈“00”〉 | |
| 13 | 2, 12 | wlk2v2elem1 30137 | . . . 4 ⊢ 𝐹 ∈ Word dom 𝐼 |
| 14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
| 15 | 5 | prid1 4714 | . . . . . . . . 9 ⊢ 𝑋 ∈ {𝑋, 𝑌} |
| 16 | 6 | prid2 4715 | . . . . . . . . 9 ⊢ 𝑌 ∈ {𝑋, 𝑌} |
| 17 | s3cl 14788 | . . . . . . . . 9 ⊢ ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌}) | |
| 18 | 15, 16, 15, 17 | mp3an 1463 | . . . . . . . 8 ⊢ 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌} |
| 19 | 14, 18 | eqeltri 2829 | . . . . . . 7 ⊢ 𝑃 ∈ Word {𝑋, 𝑌} |
| 20 | wrdf 14427 | . . . . . . 7 ⊢ (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌} |
| 22 | 14 | fveq2i 6831 | . . . . . . . . 9 ⊢ (♯‘𝑃) = (♯‘〈“𝑋𝑌𝑋”〉) |
| 23 | s3len 14803 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌𝑋”〉) = 3 | |
| 24 | 22, 23 | eqtr2i 2757 | . . . . . . . 8 ⊢ 3 = (♯‘𝑃) |
| 25 | 24 | oveq2i 7363 | . . . . . . 7 ⊢ (0..^3) = (0..^(♯‘𝑃)) |
| 26 | 25 | feq2i 6648 | . . . . . 6 ⊢ (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) |
| 27 | 21, 26 | mpbir 231 | . . . . 5 ⊢ 𝑃:(0..^3)⟶{𝑋, 𝑌} |
| 28 | 12 | fveq2i 6831 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“00”〉) |
| 29 | s2len 14798 | . . . . . . . . 9 ⊢ (♯‘〈“00”〉) = 2 | |
| 30 | 28, 29 | eqtri 2756 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
| 31 | 30 | oveq2i 7363 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...2) |
| 32 | 3z 12511 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
| 33 | fzoval 13562 | . . . . . . . . 9 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^3) = (0...(3 − 1)) |
| 35 | 3m1e2 12255 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
| 36 | 35 | oveq2i 7363 | . . . . . . . 8 ⊢ (0...(3 − 1)) = (0...2) |
| 37 | 34, 36 | eqtr2i 2757 | . . . . . . 7 ⊢ (0...2) = (0..^3) |
| 38 | 31, 37 | eqtri 2756 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^3) |
| 39 | 38 | feq2i 6648 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌}) |
| 40 | 27, 39 | mpbir 231 | . . . 4 ⊢ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} |
| 41 | 2, 12, 5, 6, 14 | wlk2v2elem2 30138 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| 42 | 13, 40, 41 | 3pm3.2i 1340 | . . 3 ⊢ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 43 | 1 | fveq2i 6831 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) |
| 44 | prex 5377 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
| 45 | s1cli 14515 | . . . . . . 7 ⊢ 〈“{𝑋, 𝑌}”〉 ∈ Word V | |
| 46 | 2, 45 | eqeltri 2829 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
| 47 | opvtxfv 28984 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌}) | |
| 48 | 44, 46, 47 | mp2an 692 | . . . . 5 ⊢ (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌} |
| 49 | 43, 48 | eqtr2i 2757 | . . . 4 ⊢ {𝑋, 𝑌} = (Vtx‘𝐺) |
| 50 | 1 | fveq2i 6831 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) |
| 51 | opiedgfv 28987 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼) | |
| 52 | 44, 46, 51 | mp2an 692 | . . . . 5 ⊢ (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼 |
| 53 | 50, 52 | eqtr2i 2757 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) |
| 54 | 49, 53 | upgriswlk 29621 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 55 | 42, 54 | mpbiri 258 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃) |
| 56 | 11, 55 | ax-mp 5 | 1 ⊢ 𝐹(Walks‘𝐺)𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 {cpr 4577 〈cop 4581 class class class wbr 5093 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 − cmin 11351 2c2 12187 3c3 12188 ℤcz 12475 ...cfz 13409 ..^cfzo 13556 ♯chash 14239 Word cword 14422 〈“cs1 14505 〈“cs2 14750 〈“cs3 14751 Vtxcvtx 28976 iEdgciedg 28977 UPGraphcupgr 29060 USPGraphcuspgr 29128 Walkscwlks 29577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-vtx 28978 df-iedg 28979 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-wlks 29580 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |