Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlk2v2e | Structured version Visualization version GIF version |
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
Ref | Expression |
---|---|
wlk2v2e | ⊢ 𝐹(Walks‘𝐺)𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.g | . . . . 5 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 | |
2 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
3 | 2 | opeq2i 4770 | . . . . 5 ⊢ 〈{𝑋, 𝑌}, 𝐼〉 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
4 | 1, 3 | eqtri 2781 | . . . 4 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
5 | wlk2v2e.x | . . . . 5 ⊢ 𝑋 ∈ V | |
6 | wlk2v2e.y | . . . . 5 ⊢ 𝑌 ∈ V | |
7 | uspgr2v1e2w 27145 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph) | |
8 | 5, 6, 7 | mp2an 691 | . . . 4 ⊢ 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph |
9 | 4, 8 | eqeltri 2848 | . . 3 ⊢ 𝐺 ∈ USPGraph |
10 | uspgrupgr 27073 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ 𝐺 ∈ UPGraph |
12 | wlk2v2e.f | . . . . 5 ⊢ 𝐹 = 〈“00”〉 | |
13 | 2, 12 | wlk2v2elem1 28044 | . . . 4 ⊢ 𝐹 ∈ Word dom 𝐼 |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
15 | 5 | prid1 4658 | . . . . . . . . 9 ⊢ 𝑋 ∈ {𝑋, 𝑌} |
16 | 6 | prid2 4659 | . . . . . . . . 9 ⊢ 𝑌 ∈ {𝑋, 𝑌} |
17 | s3cl 14293 | . . . . . . . . 9 ⊢ ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌}) | |
18 | 15, 16, 15, 17 | mp3an 1458 | . . . . . . . 8 ⊢ 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌} |
19 | 14, 18 | eqeltri 2848 | . . . . . . 7 ⊢ 𝑃 ∈ Word {𝑋, 𝑌} |
20 | wrdf 13923 | . . . . . . 7 ⊢ (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌} |
22 | 14 | fveq2i 6665 | . . . . . . . . 9 ⊢ (♯‘𝑃) = (♯‘〈“𝑋𝑌𝑋”〉) |
23 | s3len 14308 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌𝑋”〉) = 3 | |
24 | 22, 23 | eqtr2i 2782 | . . . . . . . 8 ⊢ 3 = (♯‘𝑃) |
25 | 24 | oveq2i 7166 | . . . . . . 7 ⊢ (0..^3) = (0..^(♯‘𝑃)) |
26 | 25 | feq2i 6494 | . . . . . 6 ⊢ (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) |
27 | 21, 26 | mpbir 234 | . . . . 5 ⊢ 𝑃:(0..^3)⟶{𝑋, 𝑌} |
28 | 12 | fveq2i 6665 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“00”〉) |
29 | s2len 14303 | . . . . . . . . 9 ⊢ (♯‘〈“00”〉) = 2 | |
30 | 28, 29 | eqtri 2781 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
31 | 30 | oveq2i 7166 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...2) |
32 | 3z 12059 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
33 | fzoval 13093 | . . . . . . . . 9 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^3) = (0...(3 − 1)) |
35 | 3m1e2 11807 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
36 | 35 | oveq2i 7166 | . . . . . . . 8 ⊢ (0...(3 − 1)) = (0...2) |
37 | 34, 36 | eqtr2i 2782 | . . . . . . 7 ⊢ (0...2) = (0..^3) |
38 | 31, 37 | eqtri 2781 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^3) |
39 | 38 | feq2i 6494 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌}) |
40 | 27, 39 | mpbir 234 | . . . 4 ⊢ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} |
41 | 2, 12, 5, 6, 14 | wlk2v2elem2 28045 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
42 | 13, 40, 41 | 3pm3.2i 1336 | . . 3 ⊢ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
43 | 1 | fveq2i 6665 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) |
44 | prex 5304 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
45 | s1cli 14011 | . . . . . . 7 ⊢ 〈“{𝑋, 𝑌}”〉 ∈ Word V | |
46 | 2, 45 | eqeltri 2848 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
47 | opvtxfv 26901 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌}) | |
48 | 44, 46, 47 | mp2an 691 | . . . . 5 ⊢ (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌} |
49 | 43, 48 | eqtr2i 2782 | . . . 4 ⊢ {𝑋, 𝑌} = (Vtx‘𝐺) |
50 | 1 | fveq2i 6665 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) |
51 | opiedgfv 26904 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼) | |
52 | 44, 46, 51 | mp2an 691 | . . . . 5 ⊢ (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼 |
53 | 50, 52 | eqtr2i 2782 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) |
54 | 49, 53 | upgriswlk 27534 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
55 | 42, 54 | mpbiri 261 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃) |
56 | 11, 55 | ax-mp 5 | 1 ⊢ 𝐹(Walks‘𝐺)𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 {cpr 4527 〈cop 4531 class class class wbr 5035 dom cdm 5527 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 0cc0 10580 1c1 10581 + caddc 10583 − cmin 10913 2c2 11734 3c3 11735 ℤcz 12025 ...cfz 12944 ..^cfzo 13087 ♯chash 13745 Word cword 13918 〈“cs1 14001 〈“cs2 14255 〈“cs3 14256 Vtxcvtx 26893 iEdgciedg 26894 UPGraphcupgr 26977 USPGraphcuspgr 27045 Walkscwlks 27490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-2o 8118 df-oadd 8121 df-er 8304 df-map 8423 df-pm 8424 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-dju 9368 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-xnn0 12012 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-hash 13746 df-word 13919 df-concat 13975 df-s1 14002 df-s2 14262 df-s3 14263 df-vtx 26895 df-iedg 26896 df-edg 26945 df-uhgr 26955 df-upgr 26979 df-uspgr 27047 df-wlks 27493 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |