Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlk2v2e | Structured version Visualization version GIF version |
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
Ref | Expression |
---|---|
wlk2v2e | ⊢ 𝐹(Walks‘𝐺)𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.g | . . . . 5 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 | |
2 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
3 | 2 | opeq2i 4808 | . . . . 5 ⊢ 〈{𝑋, 𝑌}, 𝐼〉 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
4 | 1, 3 | eqtri 2766 | . . . 4 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
5 | wlk2v2e.x | . . . . 5 ⊢ 𝑋 ∈ V | |
6 | wlk2v2e.y | . . . . 5 ⊢ 𝑌 ∈ V | |
7 | uspgr2v1e2w 27618 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph) | |
8 | 5, 6, 7 | mp2an 689 | . . . 4 ⊢ 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph |
9 | 4, 8 | eqeltri 2835 | . . 3 ⊢ 𝐺 ∈ USPGraph |
10 | uspgrupgr 27546 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ 𝐺 ∈ UPGraph |
12 | wlk2v2e.f | . . . . 5 ⊢ 𝐹 = 〈“00”〉 | |
13 | 2, 12 | wlk2v2elem1 28519 | . . . 4 ⊢ 𝐹 ∈ Word dom 𝐼 |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
15 | 5 | prid1 4698 | . . . . . . . . 9 ⊢ 𝑋 ∈ {𝑋, 𝑌} |
16 | 6 | prid2 4699 | . . . . . . . . 9 ⊢ 𝑌 ∈ {𝑋, 𝑌} |
17 | s3cl 14592 | . . . . . . . . 9 ⊢ ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌}) | |
18 | 15, 16, 15, 17 | mp3an 1460 | . . . . . . . 8 ⊢ 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌} |
19 | 14, 18 | eqeltri 2835 | . . . . . . 7 ⊢ 𝑃 ∈ Word {𝑋, 𝑌} |
20 | wrdf 14222 | . . . . . . 7 ⊢ (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌} |
22 | 14 | fveq2i 6777 | . . . . . . . . 9 ⊢ (♯‘𝑃) = (♯‘〈“𝑋𝑌𝑋”〉) |
23 | s3len 14607 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌𝑋”〉) = 3 | |
24 | 22, 23 | eqtr2i 2767 | . . . . . . . 8 ⊢ 3 = (♯‘𝑃) |
25 | 24 | oveq2i 7286 | . . . . . . 7 ⊢ (0..^3) = (0..^(♯‘𝑃)) |
26 | 25 | feq2i 6592 | . . . . . 6 ⊢ (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) |
27 | 21, 26 | mpbir 230 | . . . . 5 ⊢ 𝑃:(0..^3)⟶{𝑋, 𝑌} |
28 | 12 | fveq2i 6777 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“00”〉) |
29 | s2len 14602 | . . . . . . . . 9 ⊢ (♯‘〈“00”〉) = 2 | |
30 | 28, 29 | eqtri 2766 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
31 | 30 | oveq2i 7286 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...2) |
32 | 3z 12353 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
33 | fzoval 13388 | . . . . . . . . 9 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^3) = (0...(3 − 1)) |
35 | 3m1e2 12101 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
36 | 35 | oveq2i 7286 | . . . . . . . 8 ⊢ (0...(3 − 1)) = (0...2) |
37 | 34, 36 | eqtr2i 2767 | . . . . . . 7 ⊢ (0...2) = (0..^3) |
38 | 31, 37 | eqtri 2766 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^3) |
39 | 38 | feq2i 6592 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌}) |
40 | 27, 39 | mpbir 230 | . . . 4 ⊢ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} |
41 | 2, 12, 5, 6, 14 | wlk2v2elem2 28520 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
42 | 13, 40, 41 | 3pm3.2i 1338 | . . 3 ⊢ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
43 | 1 | fveq2i 6777 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) |
44 | prex 5355 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
45 | s1cli 14310 | . . . . . . 7 ⊢ 〈“{𝑋, 𝑌}”〉 ∈ Word V | |
46 | 2, 45 | eqeltri 2835 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
47 | opvtxfv 27374 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌}) | |
48 | 44, 46, 47 | mp2an 689 | . . . . 5 ⊢ (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌} |
49 | 43, 48 | eqtr2i 2767 | . . . 4 ⊢ {𝑋, 𝑌} = (Vtx‘𝐺) |
50 | 1 | fveq2i 6777 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) |
51 | opiedgfv 27377 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼) | |
52 | 44, 46, 51 | mp2an 689 | . . . . 5 ⊢ (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼 |
53 | 50, 52 | eqtr2i 2767 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) |
54 | 49, 53 | upgriswlk 28008 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
55 | 42, 54 | mpbiri 257 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃) |
56 | 11, 55 | ax-mp 5 | 1 ⊢ 𝐹(Walks‘𝐺)𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 {cpr 4563 〈cop 4567 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 2c2 12028 3c3 12029 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Word cword 14217 〈“cs1 14300 〈“cs2 14554 〈“cs3 14555 Vtxcvtx 27366 iEdgciedg 27367 UPGraphcupgr 27450 USPGraphcuspgr 27518 Walkscwlks 27963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-vtx 27368 df-iedg 27369 df-edg 27418 df-uhgr 27428 df-upgr 27452 df-uspgr 27520 df-wlks 27966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |