MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2e Structured version   Visualization version   GIF version

Theorem wlk2v2e 30176
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
wlk2v2e.g 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
Assertion
Ref Expression
wlk2v2e 𝐹(Walks‘𝐺)𝑃

Proof of Theorem wlk2v2e
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlk2v2e.g . . . . 5 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
2 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
32opeq2i 4877 . . . . 5 ⟨{𝑋, 𝑌}, 𝐼⟩ = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
41, 3eqtri 2765 . . . 4 𝐺 = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
5 wlk2v2e.x . . . . 5 𝑋 ∈ V
6 wlk2v2e.y . . . . 5 𝑌 ∈ V
7 uspgr2v1e2w 29268 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph)
85, 6, 7mp2an 692 . . . 4 ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph
94, 8eqeltri 2837 . . 3 𝐺 ∈ USPGraph
10 uspgrupgr 29195 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
119, 10ax-mp 5 . 2 𝐺 ∈ UPGraph
12 wlk2v2e.f . . . . 5 𝐹 = ⟨“00”⟩
132, 12wlk2v2elem1 30174 . . . 4 𝐹 ∈ Word dom 𝐼
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
155prid1 4762 . . . . . . . . 9 𝑋 ∈ {𝑋, 𝑌}
166prid2 4763 . . . . . . . . 9 𝑌 ∈ {𝑋, 𝑌}
17 s3cl 14918 . . . . . . . . 9 ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌})
1815, 16, 15, 17mp3an 1463 . . . . . . . 8 ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌}
1914, 18eqeltri 2837 . . . . . . 7 𝑃 ∈ Word {𝑋, 𝑌}
20 wrdf 14557 . . . . . . 7 (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2119, 20ax-mp 5 . . . . . 6 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}
2214fveq2i 6909 . . . . . . . . 9 (♯‘𝑃) = (♯‘⟨“𝑋𝑌𝑋”⟩)
23 s3len 14933 . . . . . . . . 9 (♯‘⟨“𝑋𝑌𝑋”⟩) = 3
2422, 23eqtr2i 2766 . . . . . . . 8 3 = (♯‘𝑃)
2524oveq2i 7442 . . . . . . 7 (0..^3) = (0..^(♯‘𝑃))
2625feq2i 6728 . . . . . 6 (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2721, 26mpbir 231 . . . . 5 𝑃:(0..^3)⟶{𝑋, 𝑌}
2812fveq2i 6909 . . . . . . . . 9 (♯‘𝐹) = (♯‘⟨“00”⟩)
29 s2len 14928 . . . . . . . . 9 (♯‘⟨“00”⟩) = 2
3028, 29eqtri 2765 . . . . . . . 8 (♯‘𝐹) = 2
3130oveq2i 7442 . . . . . . 7 (0...(♯‘𝐹)) = (0...2)
32 3z 12650 . . . . . . . . 9 3 ∈ ℤ
33 fzoval 13700 . . . . . . . . 9 (3 ∈ ℤ → (0..^3) = (0...(3 − 1)))
3432, 33ax-mp 5 . . . . . . . 8 (0..^3) = (0...(3 − 1))
35 3m1e2 12394 . . . . . . . . 9 (3 − 1) = 2
3635oveq2i 7442 . . . . . . . 8 (0...(3 − 1)) = (0...2)
3734, 36eqtr2i 2766 . . . . . . 7 (0...2) = (0..^3)
3831, 37eqtri 2765 . . . . . 6 (0...(♯‘𝐹)) = (0..^3)
3938feq2i 6728 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌})
4027, 39mpbir 231 . . . 4 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌}
412, 12, 5, 6, 14wlk2v2elem2 30175 . . . 4 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
4213, 40, 413pm3.2i 1340 . . 3 (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
431fveq2i 6909 . . . . 5 (Vtx‘𝐺) = (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩)
44 prex 5437 . . . . . 6 {𝑋, 𝑌} ∈ V
45 s1cli 14643 . . . . . . 7 ⟨“{𝑋, 𝑌}”⟩ ∈ Word V
462, 45eqeltri 2837 . . . . . 6 𝐼 ∈ Word V
47 opvtxfv 29021 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌})
4844, 46, 47mp2an 692 . . . . 5 (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌}
4943, 48eqtr2i 2766 . . . 4 {𝑋, 𝑌} = (Vtx‘𝐺)
501fveq2i 6909 . . . . 5 (iEdg‘𝐺) = (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩)
51 opiedgfv 29024 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼)
5244, 46, 51mp2an 692 . . . . 5 (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼
5350, 52eqtr2i 2766 . . . 4 𝐼 = (iEdg‘𝐺)
5449, 53upgriswlk 29659 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5542, 54mpbiri 258 . 2 (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃)
5611, 55ax-mp 5 1 𝐹(Walks‘𝐺)𝑃
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {cpr 4628  cop 4632   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  2c2 12321  3c3 12322  cz 12613  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552  ⟨“cs1 14633  ⟨“cs2 14880  ⟨“cs3 14881  Vtxcvtx 29013  iEdgciedg 29014  UPGraphcupgr 29097  USPGraphcuspgr 29165  Walkscwlks 29614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-vtx 29015  df-iedg 29016  df-edg 29065  df-uhgr 29075  df-upgr 29099  df-uspgr 29167  df-wlks 29617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator