| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlk2v2e | Structured version Visualization version GIF version | ||
| Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
| wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
| wlk2v2e.x | ⊢ 𝑋 ∈ V |
| wlk2v2e.y | ⊢ 𝑌 ∈ V |
| wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
| wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
| Ref | Expression |
|---|---|
| wlk2v2e | ⊢ 𝐹(Walks‘𝐺)𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.g | . . . . 5 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 | |
| 2 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
| 3 | 2 | opeq2i 4853 | . . . . 5 ⊢ 〈{𝑋, 𝑌}, 𝐼〉 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
| 4 | 1, 3 | eqtri 2758 | . . . 4 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
| 5 | wlk2v2e.x | . . . . 5 ⊢ 𝑋 ∈ V | |
| 6 | wlk2v2e.y | . . . . 5 ⊢ 𝑌 ∈ V | |
| 7 | uspgr2v1e2w 29230 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . 4 ⊢ 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph |
| 9 | 4, 8 | eqeltri 2830 | . . 3 ⊢ 𝐺 ∈ USPGraph |
| 10 | uspgrupgr 29157 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ 𝐺 ∈ UPGraph |
| 12 | wlk2v2e.f | . . . . 5 ⊢ 𝐹 = 〈“00”〉 | |
| 13 | 2, 12 | wlk2v2elem1 30136 | . . . 4 ⊢ 𝐹 ∈ Word dom 𝐼 |
| 14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
| 15 | 5 | prid1 4738 | . . . . . . . . 9 ⊢ 𝑋 ∈ {𝑋, 𝑌} |
| 16 | 6 | prid2 4739 | . . . . . . . . 9 ⊢ 𝑌 ∈ {𝑋, 𝑌} |
| 17 | s3cl 14898 | . . . . . . . . 9 ⊢ ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌}) | |
| 18 | 15, 16, 15, 17 | mp3an 1463 | . . . . . . . 8 ⊢ 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌} |
| 19 | 14, 18 | eqeltri 2830 | . . . . . . 7 ⊢ 𝑃 ∈ Word {𝑋, 𝑌} |
| 20 | wrdf 14536 | . . . . . . 7 ⊢ (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌} |
| 22 | 14 | fveq2i 6879 | . . . . . . . . 9 ⊢ (♯‘𝑃) = (♯‘〈“𝑋𝑌𝑋”〉) |
| 23 | s3len 14913 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌𝑋”〉) = 3 | |
| 24 | 22, 23 | eqtr2i 2759 | . . . . . . . 8 ⊢ 3 = (♯‘𝑃) |
| 25 | 24 | oveq2i 7416 | . . . . . . 7 ⊢ (0..^3) = (0..^(♯‘𝑃)) |
| 26 | 25 | feq2i 6698 | . . . . . 6 ⊢ (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) |
| 27 | 21, 26 | mpbir 231 | . . . . 5 ⊢ 𝑃:(0..^3)⟶{𝑋, 𝑌} |
| 28 | 12 | fveq2i 6879 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“00”〉) |
| 29 | s2len 14908 | . . . . . . . . 9 ⊢ (♯‘〈“00”〉) = 2 | |
| 30 | 28, 29 | eqtri 2758 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
| 31 | 30 | oveq2i 7416 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...2) |
| 32 | 3z 12625 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
| 33 | fzoval 13677 | . . . . . . . . 9 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^3) = (0...(3 − 1)) |
| 35 | 3m1e2 12368 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
| 36 | 35 | oveq2i 7416 | . . . . . . . 8 ⊢ (0...(3 − 1)) = (0...2) |
| 37 | 34, 36 | eqtr2i 2759 | . . . . . . 7 ⊢ (0...2) = (0..^3) |
| 38 | 31, 37 | eqtri 2758 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^3) |
| 39 | 38 | feq2i 6698 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌}) |
| 40 | 27, 39 | mpbir 231 | . . . 4 ⊢ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} |
| 41 | 2, 12, 5, 6, 14 | wlk2v2elem2 30137 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
| 42 | 13, 40, 41 | 3pm3.2i 1340 | . . 3 ⊢ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 43 | 1 | fveq2i 6879 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) |
| 44 | prex 5407 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
| 45 | s1cli 14623 | . . . . . . 7 ⊢ 〈“{𝑋, 𝑌}”〉 ∈ Word V | |
| 46 | 2, 45 | eqeltri 2830 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
| 47 | opvtxfv 28983 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌}) | |
| 48 | 44, 46, 47 | mp2an 692 | . . . . 5 ⊢ (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌} |
| 49 | 43, 48 | eqtr2i 2759 | . . . 4 ⊢ {𝑋, 𝑌} = (Vtx‘𝐺) |
| 50 | 1 | fveq2i 6879 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) |
| 51 | opiedgfv 28986 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼) | |
| 52 | 44, 46, 51 | mp2an 692 | . . . . 5 ⊢ (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼 |
| 53 | 50, 52 | eqtr2i 2759 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) |
| 54 | 49, 53 | upgriswlk 29621 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 55 | 42, 54 | mpbiri 258 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃) |
| 56 | 11, 55 | ax-mp 5 | 1 ⊢ 𝐹(Walks‘𝐺)𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 {cpr 4603 〈cop 4607 class class class wbr 5119 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 − cmin 11466 2c2 12295 3c3 12296 ℤcz 12588 ...cfz 13524 ..^cfzo 13671 ♯chash 14348 Word cword 14531 〈“cs1 14613 〈“cs2 14860 〈“cs3 14861 Vtxcvtx 28975 iEdgciedg 28976 UPGraphcupgr 29059 USPGraphcuspgr 29127 Walkscwlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-vtx 28977 df-iedg 28978 df-edg 29027 df-uhgr 29037 df-upgr 29061 df-uspgr 29129 df-wlks 29579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |