MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2e Structured version   Visualization version   GIF version

Theorem wlk2v2e 30119
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
wlk2v2e.g 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
Assertion
Ref Expression
wlk2v2e 𝐹(Walks‘𝐺)𝑃

Proof of Theorem wlk2v2e
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlk2v2e.g . . . . 5 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
2 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
32opeq2i 4831 . . . . 5 ⟨{𝑋, 𝑌}, 𝐼⟩ = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
41, 3eqtri 2752 . . . 4 𝐺 = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
5 wlk2v2e.x . . . . 5 𝑋 ∈ V
6 wlk2v2e.y . . . . 5 𝑌 ∈ V
7 uspgr2v1e2w 29214 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph)
85, 6, 7mp2an 692 . . . 4 ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph
94, 8eqeltri 2824 . . 3 𝐺 ∈ USPGraph
10 uspgrupgr 29141 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
119, 10ax-mp 5 . 2 𝐺 ∈ UPGraph
12 wlk2v2e.f . . . . 5 𝐹 = ⟨“00”⟩
132, 12wlk2v2elem1 30117 . . . 4 𝐹 ∈ Word dom 𝐼
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
155prid1 4716 . . . . . . . . 9 𝑋 ∈ {𝑋, 𝑌}
166prid2 4717 . . . . . . . . 9 𝑌 ∈ {𝑋, 𝑌}
17 s3cl 14804 . . . . . . . . 9 ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌})
1815, 16, 15, 17mp3an 1463 . . . . . . . 8 ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌}
1914, 18eqeltri 2824 . . . . . . 7 𝑃 ∈ Word {𝑋, 𝑌}
20 wrdf 14443 . . . . . . 7 (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2119, 20ax-mp 5 . . . . . 6 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}
2214fveq2i 6829 . . . . . . . . 9 (♯‘𝑃) = (♯‘⟨“𝑋𝑌𝑋”⟩)
23 s3len 14819 . . . . . . . . 9 (♯‘⟨“𝑋𝑌𝑋”⟩) = 3
2422, 23eqtr2i 2753 . . . . . . . 8 3 = (♯‘𝑃)
2524oveq2i 7364 . . . . . . 7 (0..^3) = (0..^(♯‘𝑃))
2625feq2i 6648 . . . . . 6 (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2721, 26mpbir 231 . . . . 5 𝑃:(0..^3)⟶{𝑋, 𝑌}
2812fveq2i 6829 . . . . . . . . 9 (♯‘𝐹) = (♯‘⟨“00”⟩)
29 s2len 14814 . . . . . . . . 9 (♯‘⟨“00”⟩) = 2
3028, 29eqtri 2752 . . . . . . . 8 (♯‘𝐹) = 2
3130oveq2i 7364 . . . . . . 7 (0...(♯‘𝐹)) = (0...2)
32 3z 12526 . . . . . . . . 9 3 ∈ ℤ
33 fzoval 13581 . . . . . . . . 9 (3 ∈ ℤ → (0..^3) = (0...(3 − 1)))
3432, 33ax-mp 5 . . . . . . . 8 (0..^3) = (0...(3 − 1))
35 3m1e2 12269 . . . . . . . . 9 (3 − 1) = 2
3635oveq2i 7364 . . . . . . . 8 (0...(3 − 1)) = (0...2)
3734, 36eqtr2i 2753 . . . . . . 7 (0...2) = (0..^3)
3831, 37eqtri 2752 . . . . . 6 (0...(♯‘𝐹)) = (0..^3)
3938feq2i 6648 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌})
4027, 39mpbir 231 . . . 4 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌}
412, 12, 5, 6, 14wlk2v2elem2 30118 . . . 4 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
4213, 40, 413pm3.2i 1340 . . 3 (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
431fveq2i 6829 . . . . 5 (Vtx‘𝐺) = (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩)
44 prex 5379 . . . . . 6 {𝑋, 𝑌} ∈ V
45 s1cli 14530 . . . . . . 7 ⟨“{𝑋, 𝑌}”⟩ ∈ Word V
462, 45eqeltri 2824 . . . . . 6 𝐼 ∈ Word V
47 opvtxfv 28967 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌})
4844, 46, 47mp2an 692 . . . . 5 (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌}
4943, 48eqtr2i 2753 . . . 4 {𝑋, 𝑌} = (Vtx‘𝐺)
501fveq2i 6829 . . . . 5 (iEdg‘𝐺) = (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩)
51 opiedgfv 28970 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼)
5244, 46, 51mp2an 692 . . . . 5 (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼
5350, 52eqtr2i 2753 . . . 4 𝐼 = (iEdg‘𝐺)
5449, 53upgriswlk 29604 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5542, 54mpbiri 258 . 2 (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃)
5611, 55ax-mp 5 1 𝐹(Walks‘𝐺)𝑃
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  {cpr 4581  cop 4585   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  cmin 11365  2c2 12201  3c3 12202  cz 12489  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  ⟨“cs1 14520  ⟨“cs2 14766  ⟨“cs3 14767  Vtxcvtx 28959  iEdgciedg 28960  UPGraphcupgr 29043  USPGraphcuspgr 29111  Walkscwlks 29560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-uspgr 29113  df-wlks 29563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator