![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlk2v2e | Structured version Visualization version GIF version |
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
Ref | Expression |
---|---|
wlk2v2e | ⊢ 𝐹(Walks‘𝐺)𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.g | . . . . 5 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 | |
2 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
3 | 2 | opeq2i 4901 | . . . . 5 ⊢ 〈{𝑋, 𝑌}, 𝐼〉 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
4 | 1, 3 | eqtri 2768 | . . . 4 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
5 | wlk2v2e.x | . . . . 5 ⊢ 𝑋 ∈ V | |
6 | wlk2v2e.y | . . . . 5 ⊢ 𝑌 ∈ V | |
7 | uspgr2v1e2w 29286 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph) | |
8 | 5, 6, 7 | mp2an 691 | . . . 4 ⊢ 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph |
9 | 4, 8 | eqeltri 2840 | . . 3 ⊢ 𝐺 ∈ USPGraph |
10 | uspgrupgr 29213 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ 𝐺 ∈ UPGraph |
12 | wlk2v2e.f | . . . . 5 ⊢ 𝐹 = 〈“00”〉 | |
13 | 2, 12 | wlk2v2elem1 30187 | . . . 4 ⊢ 𝐹 ∈ Word dom 𝐼 |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
15 | 5 | prid1 4787 | . . . . . . . . 9 ⊢ 𝑋 ∈ {𝑋, 𝑌} |
16 | 6 | prid2 4788 | . . . . . . . . 9 ⊢ 𝑌 ∈ {𝑋, 𝑌} |
17 | s3cl 14928 | . . . . . . . . 9 ⊢ ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌}) | |
18 | 15, 16, 15, 17 | mp3an 1461 | . . . . . . . 8 ⊢ 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌} |
19 | 14, 18 | eqeltri 2840 | . . . . . . 7 ⊢ 𝑃 ∈ Word {𝑋, 𝑌} |
20 | wrdf 14567 | . . . . . . 7 ⊢ (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌} |
22 | 14 | fveq2i 6923 | . . . . . . . . 9 ⊢ (♯‘𝑃) = (♯‘〈“𝑋𝑌𝑋”〉) |
23 | s3len 14943 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌𝑋”〉) = 3 | |
24 | 22, 23 | eqtr2i 2769 | . . . . . . . 8 ⊢ 3 = (♯‘𝑃) |
25 | 24 | oveq2i 7459 | . . . . . . 7 ⊢ (0..^3) = (0..^(♯‘𝑃)) |
26 | 25 | feq2i 6739 | . . . . . 6 ⊢ (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) |
27 | 21, 26 | mpbir 231 | . . . . 5 ⊢ 𝑃:(0..^3)⟶{𝑋, 𝑌} |
28 | 12 | fveq2i 6923 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“00”〉) |
29 | s2len 14938 | . . . . . . . . 9 ⊢ (♯‘〈“00”〉) = 2 | |
30 | 28, 29 | eqtri 2768 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
31 | 30 | oveq2i 7459 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...2) |
32 | 3z 12676 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
33 | fzoval 13717 | . . . . . . . . 9 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^3) = (0...(3 − 1)) |
35 | 3m1e2 12421 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
36 | 35 | oveq2i 7459 | . . . . . . . 8 ⊢ (0...(3 − 1)) = (0...2) |
37 | 34, 36 | eqtr2i 2769 | . . . . . . 7 ⊢ (0...2) = (0..^3) |
38 | 31, 37 | eqtri 2768 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^3) |
39 | 38 | feq2i 6739 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌}) |
40 | 27, 39 | mpbir 231 | . . . 4 ⊢ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} |
41 | 2, 12, 5, 6, 14 | wlk2v2elem2 30188 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
42 | 13, 40, 41 | 3pm3.2i 1339 | . . 3 ⊢ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
43 | 1 | fveq2i 6923 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) |
44 | prex 5452 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
45 | s1cli 14653 | . . . . . . 7 ⊢ 〈“{𝑋, 𝑌}”〉 ∈ Word V | |
46 | 2, 45 | eqeltri 2840 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
47 | opvtxfv 29039 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌}) | |
48 | 44, 46, 47 | mp2an 691 | . . . . 5 ⊢ (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌} |
49 | 43, 48 | eqtr2i 2769 | . . . 4 ⊢ {𝑋, 𝑌} = (Vtx‘𝐺) |
50 | 1 | fveq2i 6923 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) |
51 | opiedgfv 29042 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼) | |
52 | 44, 46, 51 | mp2an 691 | . . . . 5 ⊢ (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼 |
53 | 50, 52 | eqtr2i 2769 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) |
54 | 49, 53 | upgriswlk 29677 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
55 | 42, 54 | mpbiri 258 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃) |
56 | 11, 55 | ax-mp 5 | 1 ⊢ 𝐹(Walks‘𝐺)𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 {cpr 4650 〈cop 4654 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 − cmin 11520 2c2 12348 3c3 12349 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 〈“cs1 14643 〈“cs2 14890 〈“cs3 14891 Vtxcvtx 29031 iEdgciedg 29032 UPGraphcupgr 29115 USPGraphcuspgr 29183 Walkscwlks 29632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-vtx 29033 df-iedg 29034 df-edg 29083 df-uhgr 29093 df-upgr 29117 df-uspgr 29185 df-wlks 29635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |