MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2e Structured version   Visualization version   GIF version

Theorem wlk2v2e 30189
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
wlk2v2e.g 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
Assertion
Ref Expression
wlk2v2e 𝐹(Walks‘𝐺)𝑃

Proof of Theorem wlk2v2e
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlk2v2e.g . . . . 5 𝐺 = ⟨{𝑋, 𝑌}, 𝐼
2 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
32opeq2i 4901 . . . . 5 ⟨{𝑋, 𝑌}, 𝐼⟩ = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
41, 3eqtri 2768 . . . 4 𝐺 = ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩
5 wlk2v2e.x . . . . 5 𝑋 ∈ V
6 wlk2v2e.y . . . . 5 𝑌 ∈ V
7 uspgr2v1e2w 29286 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph)
85, 6, 7mp2an 691 . . . 4 ⟨{𝑋, 𝑌}, ⟨“{𝑋, 𝑌}”⟩⟩ ∈ USPGraph
94, 8eqeltri 2840 . . 3 𝐺 ∈ USPGraph
10 uspgrupgr 29213 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
119, 10ax-mp 5 . 2 𝐺 ∈ UPGraph
12 wlk2v2e.f . . . . 5 𝐹 = ⟨“00”⟩
132, 12wlk2v2elem1 30187 . . . 4 𝐹 ∈ Word dom 𝐼
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
155prid1 4787 . . . . . . . . 9 𝑋 ∈ {𝑋, 𝑌}
166prid2 4788 . . . . . . . . 9 𝑌 ∈ {𝑋, 𝑌}
17 s3cl 14928 . . . . . . . . 9 ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌})
1815, 16, 15, 17mp3an 1461 . . . . . . . 8 ⟨“𝑋𝑌𝑋”⟩ ∈ Word {𝑋, 𝑌}
1914, 18eqeltri 2840 . . . . . . 7 𝑃 ∈ Word {𝑋, 𝑌}
20 wrdf 14567 . . . . . . 7 (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2119, 20ax-mp 5 . . . . . 6 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}
2214fveq2i 6923 . . . . . . . . 9 (♯‘𝑃) = (♯‘⟨“𝑋𝑌𝑋”⟩)
23 s3len 14943 . . . . . . . . 9 (♯‘⟨“𝑋𝑌𝑋”⟩) = 3
2422, 23eqtr2i 2769 . . . . . . . 8 3 = (♯‘𝑃)
2524oveq2i 7459 . . . . . . 7 (0..^3) = (0..^(♯‘𝑃))
2625feq2i 6739 . . . . . 6 (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌})
2721, 26mpbir 231 . . . . 5 𝑃:(0..^3)⟶{𝑋, 𝑌}
2812fveq2i 6923 . . . . . . . . 9 (♯‘𝐹) = (♯‘⟨“00”⟩)
29 s2len 14938 . . . . . . . . 9 (♯‘⟨“00”⟩) = 2
3028, 29eqtri 2768 . . . . . . . 8 (♯‘𝐹) = 2
3130oveq2i 7459 . . . . . . 7 (0...(♯‘𝐹)) = (0...2)
32 3z 12676 . . . . . . . . 9 3 ∈ ℤ
33 fzoval 13717 . . . . . . . . 9 (3 ∈ ℤ → (0..^3) = (0...(3 − 1)))
3432, 33ax-mp 5 . . . . . . . 8 (0..^3) = (0...(3 − 1))
35 3m1e2 12421 . . . . . . . . 9 (3 − 1) = 2
3635oveq2i 7459 . . . . . . . 8 (0...(3 − 1)) = (0...2)
3734, 36eqtr2i 2769 . . . . . . 7 (0...2) = (0..^3)
3831, 37eqtri 2768 . . . . . 6 (0...(♯‘𝐹)) = (0..^3)
3938feq2i 6739 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌})
4027, 39mpbir 231 . . . 4 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌}
412, 12, 5, 6, 14wlk2v2elem2 30188 . . . 4 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
4213, 40, 413pm3.2i 1339 . . 3 (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
431fveq2i 6923 . . . . 5 (Vtx‘𝐺) = (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩)
44 prex 5452 . . . . . 6 {𝑋, 𝑌} ∈ V
45 s1cli 14653 . . . . . . 7 ⟨“{𝑋, 𝑌}”⟩ ∈ Word V
462, 45eqeltri 2840 . . . . . 6 𝐼 ∈ Word V
47 opvtxfv 29039 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌})
4844, 46, 47mp2an 691 . . . . 5 (Vtx‘⟨{𝑋, 𝑌}, 𝐼⟩) = {𝑋, 𝑌}
4943, 48eqtr2i 2769 . . . 4 {𝑋, 𝑌} = (Vtx‘𝐺)
501fveq2i 6923 . . . . 5 (iEdg‘𝐺) = (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩)
51 opiedgfv 29042 . . . . . 6 (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼)
5244, 46, 51mp2an 691 . . . . 5 (iEdg‘⟨{𝑋, 𝑌}, 𝐼⟩) = 𝐼
5350, 52eqtr2i 2769 . . . 4 𝐼 = (iEdg‘𝐺)
5449, 53upgriswlk 29677 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5542, 54mpbiri 258 . 2 (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃)
5611, 55ax-mp 5 1 𝐹(Walks‘𝐺)𝑃
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {cpr 4650  cop 4654   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  2c2 12348  3c3 12349  cz 12639  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  ⟨“cs1 14643  ⟨“cs2 14890  ⟨“cs3 14891  Vtxcvtx 29031  iEdgciedg 29032  UPGraphcupgr 29115  USPGraphcuspgr 29183  Walkscwlks 29632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-uspgr 29185  df-wlks 29635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator