![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlk2v2e | Structured version Visualization version GIF version |
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
Ref | Expression |
---|---|
wlk2v2e | ⊢ 𝐹(Walks‘𝐺)𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.g | . . . . 5 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 | |
2 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
3 | 2 | opeq2i 4882 | . . . . 5 ⊢ 〈{𝑋, 𝑌}, 𝐼〉 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
4 | 1, 3 | eqtri 2763 | . . . 4 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
5 | wlk2v2e.x | . . . . 5 ⊢ 𝑋 ∈ V | |
6 | wlk2v2e.y | . . . . 5 ⊢ 𝑌 ∈ V | |
7 | uspgr2v1e2w 29283 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph) | |
8 | 5, 6, 7 | mp2an 692 | . . . 4 ⊢ 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph |
9 | 4, 8 | eqeltri 2835 | . . 3 ⊢ 𝐺 ∈ USPGraph |
10 | uspgrupgr 29210 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ 𝐺 ∈ UPGraph |
12 | wlk2v2e.f | . . . . 5 ⊢ 𝐹 = 〈“00”〉 | |
13 | 2, 12 | wlk2v2elem1 30184 | . . . 4 ⊢ 𝐹 ∈ Word dom 𝐼 |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
15 | 5 | prid1 4767 | . . . . . . . . 9 ⊢ 𝑋 ∈ {𝑋, 𝑌} |
16 | 6 | prid2 4768 | . . . . . . . . 9 ⊢ 𝑌 ∈ {𝑋, 𝑌} |
17 | s3cl 14915 | . . . . . . . . 9 ⊢ ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌}) | |
18 | 15, 16, 15, 17 | mp3an 1460 | . . . . . . . 8 ⊢ 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌} |
19 | 14, 18 | eqeltri 2835 | . . . . . . 7 ⊢ 𝑃 ∈ Word {𝑋, 𝑌} |
20 | wrdf 14554 | . . . . . . 7 ⊢ (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌} |
22 | 14 | fveq2i 6910 | . . . . . . . . 9 ⊢ (♯‘𝑃) = (♯‘〈“𝑋𝑌𝑋”〉) |
23 | s3len 14930 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌𝑋”〉) = 3 | |
24 | 22, 23 | eqtr2i 2764 | . . . . . . . 8 ⊢ 3 = (♯‘𝑃) |
25 | 24 | oveq2i 7442 | . . . . . . 7 ⊢ (0..^3) = (0..^(♯‘𝑃)) |
26 | 25 | feq2i 6729 | . . . . . 6 ⊢ (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) |
27 | 21, 26 | mpbir 231 | . . . . 5 ⊢ 𝑃:(0..^3)⟶{𝑋, 𝑌} |
28 | 12 | fveq2i 6910 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“00”〉) |
29 | s2len 14925 | . . . . . . . . 9 ⊢ (♯‘〈“00”〉) = 2 | |
30 | 28, 29 | eqtri 2763 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
31 | 30 | oveq2i 7442 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...2) |
32 | 3z 12648 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
33 | fzoval 13697 | . . . . . . . . 9 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^3) = (0...(3 − 1)) |
35 | 3m1e2 12392 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
36 | 35 | oveq2i 7442 | . . . . . . . 8 ⊢ (0...(3 − 1)) = (0...2) |
37 | 34, 36 | eqtr2i 2764 | . . . . . . 7 ⊢ (0...2) = (0..^3) |
38 | 31, 37 | eqtri 2763 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^3) |
39 | 38 | feq2i 6729 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌}) |
40 | 27, 39 | mpbir 231 | . . . 4 ⊢ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} |
41 | 2, 12, 5, 6, 14 | wlk2v2elem2 30185 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
42 | 13, 40, 41 | 3pm3.2i 1338 | . . 3 ⊢ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
43 | 1 | fveq2i 6910 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) |
44 | prex 5443 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
45 | s1cli 14640 | . . . . . . 7 ⊢ 〈“{𝑋, 𝑌}”〉 ∈ Word V | |
46 | 2, 45 | eqeltri 2835 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
47 | opvtxfv 29036 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌}) | |
48 | 44, 46, 47 | mp2an 692 | . . . . 5 ⊢ (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌} |
49 | 43, 48 | eqtr2i 2764 | . . . 4 ⊢ {𝑋, 𝑌} = (Vtx‘𝐺) |
50 | 1 | fveq2i 6910 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) |
51 | opiedgfv 29039 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼) | |
52 | 44, 46, 51 | mp2an 692 | . . . . 5 ⊢ (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼 |
53 | 50, 52 | eqtr2i 2764 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) |
54 | 49, 53 | upgriswlk 29674 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
55 | 42, 54 | mpbiri 258 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃) |
56 | 11, 55 | ax-mp 5 | 1 ⊢ 𝐹(Walks‘𝐺)𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 {cpr 4633 〈cop 4637 class class class wbr 5148 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 − cmin 11490 2c2 12319 3c3 12320 ℤcz 12611 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 〈“cs1 14630 〈“cs2 14877 〈“cs3 14878 Vtxcvtx 29028 iEdgciedg 29029 UPGraphcupgr 29112 USPGraphcuspgr 29180 Walkscwlks 29629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-vtx 29030 df-iedg 29031 df-edg 29080 df-uhgr 29090 df-upgr 29114 df-uspgr 29182 df-wlks 29632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |