MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatpfx2 Structured version   Visualization version   GIF version

Theorem pfxccatpfx2 14691
Description: A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccatpfx2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))

Proof of Theorem pfxccatpfx2
StepHypRef Expression
1 ccatcl 14528 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
213adant3 1130 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3 swrdccatin2.l . . . . . . 7 𝐿 = (♯‘𝐴)
4 lencl 14487 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
53, 4eqeltrid 2835 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
6 elfzuz 13501 . . . . . 6 (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (ℤ‘(𝐿 + 1)))
7 peano2nn0 12516 . . . . . . 7 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
87anim1i 613 . . . . . 6 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
95, 6, 8syl2an 594 . . . . 5 ((𝐴 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
1093adant2 1129 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
11 eluznn0 12905 . . . 4 (((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → 𝑁 ∈ ℕ0)
1210, 11syl 17 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
13 pfxval 14627 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
142, 12, 13syl2anc 582 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
15 3simpa 1146 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
1653ad2ant1 1131 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
17 0elfz 13602 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
1816, 17syl 17 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 0 ∈ (0...𝐿))
194nn0zd 12588 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
203, 19eqeltrid 2835 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℤ)
2120adantr 479 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
22 uzid 12841 . . . . . . . . 9 (𝐿 ∈ ℤ → 𝐿 ∈ (ℤ𝐿))
2321, 22syl 17 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (ℤ𝐿))
24 peano2uz 12889 . . . . . . . 8 (𝐿 ∈ (ℤ𝐿) → (𝐿 + 1) ∈ (ℤ𝐿))
25 fzss1 13544 . . . . . . . 8 ((𝐿 + 1) ∈ (ℤ𝐿) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
2623, 24, 253syl 18 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
27 pfxccatpfx2.m . . . . . . . . . 10 𝑀 = (♯‘𝐵)
2827eqcomi 2739 . . . . . . . . 9 (♯‘𝐵) = 𝑀
2928oveq2i 7422 . . . . . . . 8 (𝐿 + (♯‘𝐵)) = (𝐿 + 𝑀)
3029oveq2i 7422 . . . . . . 7 (𝐿...(𝐿 + (♯‘𝐵))) = (𝐿...(𝐿 + 𝑀))
3126, 30sseqtrrdi 4032 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + (♯‘𝐵))))
3231sseld 3980 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
33323impia 1115 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
3418, 33jca 510 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
353pfxccatin12 14687 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
3615, 34, 35sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
373opeq2i 4876 . . . . . 6 ⟨0, 𝐿⟩ = ⟨0, (♯‘𝐴)⟩
3837oveq2i 7422 . . . . 5 (𝐴 substr ⟨0, 𝐿⟩) = (𝐴 substr ⟨0, (♯‘𝐴)⟩)
39 pfxval 14627 . . . . . . 7 ((𝐴 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ℕ0) → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
404, 39mpdan 683 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
41 pfxid 14638 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = 𝐴)
4240, 41eqtr3d 2772 . . . . 5 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (♯‘𝐴)⟩) = 𝐴)
4338, 42eqtrid 2782 . . . 4 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
44433ad2ant1 1131 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
4544oveq1d 7426 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
4614, 36, 453eqtrd 2774 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wss 3947  cop 4633  cfv 6542  (class class class)co 7411  0cc0 11112  1c1 11113   + caddc 11115  cmin 11448  0cn0 12476  cz 12562  cuz 12826  ...cfz 13488  chash 14294  Word cword 14468   ++ cconcat 14524   substr csubstr 14594   prefix cpfx 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-substr 14595  df-pfx 14625
This theorem is referenced by:  pfxccat3a  14692
  Copyright terms: Public domain W3C validator