Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatpfx2 Structured version   Visualization version   GIF version

Theorem pfxccatpfx2 14092
 Description: A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccatpfx2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))

Proof of Theorem pfxccatpfx2
StepHypRef Expression
1 ccatcl 13919 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
213adant3 1129 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3 swrdccatin2.l . . . . . . 7 𝐿 = (♯‘𝐴)
4 lencl 13878 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
53, 4eqeltrid 2894 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
6 elfzuz 12900 . . . . . 6 (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (ℤ‘(𝐿 + 1)))
7 peano2nn0 11927 . . . . . . 7 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
87anim1i 617 . . . . . 6 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
95, 6, 8syl2an 598 . . . . 5 ((𝐴 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
1093adant2 1128 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
11 eluznn0 12307 . . . 4 (((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → 𝑁 ∈ ℕ0)
1210, 11syl 17 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
13 pfxval 14028 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
142, 12, 13syl2anc 587 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
15 3simpa 1145 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
1653ad2ant1 1130 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
17 0elfz 13001 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
1816, 17syl 17 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 0 ∈ (0...𝐿))
194nn0zd 12075 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
203, 19eqeltrid 2894 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℤ)
2120adantr 484 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
22 uzid 12248 . . . . . . . . 9 (𝐿 ∈ ℤ → 𝐿 ∈ (ℤ𝐿))
2321, 22syl 17 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (ℤ𝐿))
24 peano2uz 12291 . . . . . . . 8 (𝐿 ∈ (ℤ𝐿) → (𝐿 + 1) ∈ (ℤ𝐿))
25 fzss1 12943 . . . . . . . 8 ((𝐿 + 1) ∈ (ℤ𝐿) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
2623, 24, 253syl 18 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
27 pfxccatpfx2.m . . . . . . . . . 10 𝑀 = (♯‘𝐵)
2827eqcomi 2807 . . . . . . . . 9 (♯‘𝐵) = 𝑀
2928oveq2i 7146 . . . . . . . 8 (𝐿 + (♯‘𝐵)) = (𝐿 + 𝑀)
3029oveq2i 7146 . . . . . . 7 (𝐿...(𝐿 + (♯‘𝐵))) = (𝐿...(𝐿 + 𝑀))
3126, 30sseqtrrdi 3966 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + (♯‘𝐵))))
3231sseld 3914 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
33323impia 1114 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
3418, 33jca 515 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
353pfxccatin12 14088 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
3615, 34, 35sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
373opeq2i 4769 . . . . . 6 ⟨0, 𝐿⟩ = ⟨0, (♯‘𝐴)⟩
3837oveq2i 7146 . . . . 5 (𝐴 substr ⟨0, 𝐿⟩) = (𝐴 substr ⟨0, (♯‘𝐴)⟩)
39 pfxval 14028 . . . . . . 7 ((𝐴 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ℕ0) → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
404, 39mpdan 686 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
41 pfxid 14039 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = 𝐴)
4240, 41eqtr3d 2835 . . . . 5 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (♯‘𝐴)⟩) = 𝐴)
4338, 42syl5eq 2845 . . . 4 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
44433ad2ant1 1130 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
4544oveq1d 7150 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
4614, 36, 453eqtrd 2837 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ⊆ wss 3881  ⟨cop 4531  ‘cfv 6324  (class class class)co 7135  0cc0 10528  1c1 10529   + caddc 10531   − cmin 10861  ℕ0cn0 11887  ℤcz 11971  ℤ≥cuz 12233  ...cfz 12887  ♯chash 13688  Word cword 13859   ++ cconcat 13915   substr csubstr 13995   prefix cpfx 14025 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-n0 11888  df-z 11972  df-uz 12234  df-fz 12888  df-fzo 13031  df-hash 13689  df-word 13860  df-concat 13916  df-substr 13996  df-pfx 14026 This theorem is referenced by:  pfxccat3a  14093
 Copyright terms: Public domain W3C validator