MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatpfx2 Structured version   Visualization version   GIF version

Theorem pfxccatpfx2 14644
Description: A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccatpfx2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))

Proof of Theorem pfxccatpfx2
StepHypRef Expression
1 ccatcl 14481 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
213adant3 1132 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3 swrdccatin2.l . . . . . . 7 𝐿 = (♯‘𝐴)
4 lencl 14440 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
53, 4eqeltrid 2835 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
6 elfzuz 13420 . . . . . 6 (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (ℤ‘(𝐿 + 1)))
7 peano2nn0 12421 . . . . . . 7 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
87anim1i 615 . . . . . 6 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
95, 6, 8syl2an 596 . . . . 5 ((𝐴 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
1093adant2 1131 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
11 eluznn0 12815 . . . 4 (((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → 𝑁 ∈ ℕ0)
1210, 11syl 17 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
13 pfxval 14581 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
142, 12, 13syl2anc 584 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
15 3simpa 1148 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
1653ad2ant1 1133 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
17 0elfz 13524 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
1816, 17syl 17 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 0 ∈ (0...𝐿))
194nn0zd 12494 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
203, 19eqeltrid 2835 . . . . . . . . 9 (𝐴 ∈ Word 𝑉𝐿 ∈ ℤ)
2120adantr 480 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
22 uzid 12747 . . . . . . . 8 (𝐿 ∈ ℤ → 𝐿 ∈ (ℤ𝐿))
23 peano2uz 12799 . . . . . . . 8 (𝐿 ∈ (ℤ𝐿) → (𝐿 + 1) ∈ (ℤ𝐿))
24 fzss1 13463 . . . . . . . 8 ((𝐿 + 1) ∈ (ℤ𝐿) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
2521, 22, 23, 244syl 19 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
26 pfxccatpfx2.m . . . . . . . . . 10 𝑀 = (♯‘𝐵)
2726eqcomi 2740 . . . . . . . . 9 (♯‘𝐵) = 𝑀
2827oveq2i 7357 . . . . . . . 8 (𝐿 + (♯‘𝐵)) = (𝐿 + 𝑀)
2928oveq2i 7357 . . . . . . 7 (𝐿...(𝐿 + (♯‘𝐵))) = (𝐿...(𝐿 + 𝑀))
3025, 29sseqtrrdi 3971 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + (♯‘𝐵))))
3130sseld 3928 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
32313impia 1117 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
3318, 32jca 511 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
343pfxccatin12 14640 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
3515, 33, 34sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
363opeq2i 4826 . . . . . 6 ⟨0, 𝐿⟩ = ⟨0, (♯‘𝐴)⟩
3736oveq2i 7357 . . . . 5 (𝐴 substr ⟨0, 𝐿⟩) = (𝐴 substr ⟨0, (♯‘𝐴)⟩)
38 pfxval 14581 . . . . . . 7 ((𝐴 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ℕ0) → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
394, 38mpdan 687 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
40 pfxid 14592 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = 𝐴)
4139, 40eqtr3d 2768 . . . . 5 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (♯‘𝐴)⟩) = 𝐴)
4237, 41eqtrid 2778 . . . 4 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
43423ad2ant1 1133 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
4443oveq1d 7361 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
4514, 35, 443eqtrd 2770 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  cop 4579  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009  cmin 11344  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  chash 14237  Word cword 14420   ++ cconcat 14477   substr csubstr 14548   prefix cpfx 14578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-substr 14549  df-pfx 14579
This theorem is referenced by:  pfxccat3a  14645
  Copyright terms: Public domain W3C validator