MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatpfx2 Structured version   Visualization version   GIF version

Theorem pfxccatpfx2 14378
Description: A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccatpfx2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))

Proof of Theorem pfxccatpfx2
StepHypRef Expression
1 ccatcl 14205 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
213adant3 1130 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3 swrdccatin2.l . . . . . . 7 𝐿 = (♯‘𝐴)
4 lencl 14164 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
53, 4eqeltrid 2843 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
6 elfzuz 13181 . . . . . 6 (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (ℤ‘(𝐿 + 1)))
7 peano2nn0 12203 . . . . . . 7 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
87anim1i 614 . . . . . 6 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
95, 6, 8syl2an 595 . . . . 5 ((𝐴 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
1093adant2 1129 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
11 eluznn0 12586 . . . 4 (((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → 𝑁 ∈ ℕ0)
1210, 11syl 17 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
13 pfxval 14314 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
142, 12, 13syl2anc 583 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
15 3simpa 1146 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
1653ad2ant1 1131 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
17 0elfz 13282 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
1816, 17syl 17 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 0 ∈ (0...𝐿))
194nn0zd 12353 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
203, 19eqeltrid 2843 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℤ)
2120adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
22 uzid 12526 . . . . . . . . 9 (𝐿 ∈ ℤ → 𝐿 ∈ (ℤ𝐿))
2321, 22syl 17 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (ℤ𝐿))
24 peano2uz 12570 . . . . . . . 8 (𝐿 ∈ (ℤ𝐿) → (𝐿 + 1) ∈ (ℤ𝐿))
25 fzss1 13224 . . . . . . . 8 ((𝐿 + 1) ∈ (ℤ𝐿) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
2623, 24, 253syl 18 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
27 pfxccatpfx2.m . . . . . . . . . 10 𝑀 = (♯‘𝐵)
2827eqcomi 2747 . . . . . . . . 9 (♯‘𝐵) = 𝑀
2928oveq2i 7266 . . . . . . . 8 (𝐿 + (♯‘𝐵)) = (𝐿 + 𝑀)
3029oveq2i 7266 . . . . . . 7 (𝐿...(𝐿 + (♯‘𝐵))) = (𝐿...(𝐿 + 𝑀))
3126, 30sseqtrrdi 3968 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + (♯‘𝐵))))
3231sseld 3916 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
33323impia 1115 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
3418, 33jca 511 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
353pfxccatin12 14374 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
3615, 34, 35sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
373opeq2i 4805 . . . . . 6 ⟨0, 𝐿⟩ = ⟨0, (♯‘𝐴)⟩
3837oveq2i 7266 . . . . 5 (𝐴 substr ⟨0, 𝐿⟩) = (𝐴 substr ⟨0, (♯‘𝐴)⟩)
39 pfxval 14314 . . . . . . 7 ((𝐴 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ℕ0) → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
404, 39mpdan 683 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
41 pfxid 14325 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = 𝐴)
4240, 41eqtr3d 2780 . . . . 5 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (♯‘𝐴)⟩) = 𝐴)
4338, 42eqtrid 2790 . . . 4 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
44433ad2ant1 1131 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
4544oveq1d 7270 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
4614, 36, 453eqtrd 2782 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cop 4564  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  chash 13972  Word cword 14145   ++ cconcat 14201   substr csubstr 14281   prefix cpfx 14311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312
This theorem is referenced by:  pfxccat3a  14379
  Copyright terms: Public domain W3C validator