MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatpfx2 Structured version   Visualization version   GIF version

Theorem pfxccatpfx2 14632
Description: A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccatpfx2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))

Proof of Theorem pfxccatpfx2
StepHypRef Expression
1 ccatcl 14469 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
213adant3 1133 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3 swrdccatin2.l . . . . . . 7 𝐿 = (♯‘𝐴)
4 lencl 14428 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
53, 4eqeltrid 2842 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
6 elfzuz 13444 . . . . . 6 (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (ℤ‘(𝐿 + 1)))
7 peano2nn0 12460 . . . . . . 7 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
87anim1i 616 . . . . . 6 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
95, 6, 8syl2an 597 . . . . 5 ((𝐴 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
1093adant2 1132 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))))
11 eluznn0 12849 . . . 4 (((𝐿 + 1) ∈ ℕ0𝑁 ∈ (ℤ‘(𝐿 + 1))) → 𝑁 ∈ ℕ0)
1210, 11syl 17 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
13 pfxval 14568 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
142, 12, 13syl2anc 585 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
15 3simpa 1149 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
1653ad2ant1 1134 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
17 0elfz 13545 . . . . 5 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
1816, 17syl 17 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 0 ∈ (0...𝐿))
194nn0zd 12532 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
203, 19eqeltrid 2842 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℤ)
2120adantr 482 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
22 uzid 12785 . . . . . . . . 9 (𝐿 ∈ ℤ → 𝐿 ∈ (ℤ𝐿))
2321, 22syl 17 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (ℤ𝐿))
24 peano2uz 12833 . . . . . . . 8 (𝐿 ∈ (ℤ𝐿) → (𝐿 + 1) ∈ (ℤ𝐿))
25 fzss1 13487 . . . . . . . 8 ((𝐿 + 1) ∈ (ℤ𝐿) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
2623, 24, 253syl 18 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + 𝑀)))
27 pfxccatpfx2.m . . . . . . . . . 10 𝑀 = (♯‘𝐵)
2827eqcomi 2746 . . . . . . . . 9 (♯‘𝐵) = 𝑀
2928oveq2i 7373 . . . . . . . 8 (𝐿 + (♯‘𝐵)) = (𝐿 + 𝑀)
3029oveq2i 7373 . . . . . . 7 (𝐿...(𝐿 + (♯‘𝐵))) = (𝐿...(𝐿 + 𝑀))
3126, 30sseqtrrdi 4000 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + 1)...(𝐿 + 𝑀)) ⊆ (𝐿...(𝐿 + (♯‘𝐵))))
3231sseld 3948 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
33323impia 1118 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
3418, 33jca 513 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
353pfxccatin12 14628 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
3615, 34, 35sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
373opeq2i 4839 . . . . . 6 ⟨0, 𝐿⟩ = ⟨0, (♯‘𝐴)⟩
3837oveq2i 7373 . . . . 5 (𝐴 substr ⟨0, 𝐿⟩) = (𝐴 substr ⟨0, (♯‘𝐴)⟩)
39 pfxval 14568 . . . . . . 7 ((𝐴 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ℕ0) → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
404, 39mpdan 686 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = (𝐴 substr ⟨0, (♯‘𝐴)⟩))
41 pfxid 14579 . . . . . 6 (𝐴 ∈ Word 𝑉 → (𝐴 prefix (♯‘𝐴)) = 𝐴)
4240, 41eqtr3d 2779 . . . . 5 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (♯‘𝐴)⟩) = 𝐴)
4338, 42eqtrid 2789 . . . 4 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
44433ad2ant1 1134 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → (𝐴 substr ⟨0, 𝐿⟩) = 𝐴)
4544oveq1d 7377 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
4614, 36, 453eqtrd 2781 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3915  cop 4597  cfv 6501  (class class class)co 7362  0cc0 11058  1c1 11059   + caddc 11061  cmin 11392  0cn0 12420  cz 12506  cuz 12770  ...cfz 13431  chash 14237  Word cword 14409   ++ cconcat 14465   substr csubstr 14535   prefix cpfx 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-concat 14466  df-substr 14536  df-pfx 14566
This theorem is referenced by:  pfxccat3a  14633
  Copyright terms: Public domain W3C validator