| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfx1 | Structured version Visualization version GIF version | ||
| Description: The prefix of length one of a nonempty word expressed as a singleton word. (Contributed by AV, 15-May-2020.) |
| Ref | Expression |
|---|---|
| pfx1 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 prefix 1) = 〈“(𝑊‘0)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12397 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝑊 ≠ ∅ → 1 ∈ ℕ0) |
| 3 | pfxval 14581 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℕ0) → (𝑊 prefix 1) = (𝑊 substr 〈0, 1〉)) | |
| 4 | 2, 3 | sylan2 593 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 prefix 1) = (𝑊 substr 〈0, 1〉)) |
| 5 | 1e0p1 12630 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 6 | 5 | opeq2i 4829 | . . . 4 ⊢ 〈0, 1〉 = 〈0, (0 + 1)〉 |
| 7 | 6 | oveq2i 7357 | . . 3 ⊢ (𝑊 substr 〈0, 1〉) = (𝑊 substr 〈0, (0 + 1)〉) |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, 1〉) = (𝑊 substr 〈0, (0 + 1)〉)) |
| 9 | lennncl 14441 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 10 | lbfzo0 13599 | . . . 4 ⊢ (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 0 ∈ (0..^(♯‘𝑊))) |
| 12 | swrds1 14574 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈0, (0 + 1)〉) = 〈“(𝑊‘0)”〉) | |
| 13 | 11, 12 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, (0 + 1)〉) = 〈“(𝑊‘0)”〉) |
| 14 | 4, 8, 13 | 3eqtrd 2770 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 prefix 1) = 〈“(𝑊‘0)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 〈cop 4582 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ℕcn 12125 ℕ0cn0 12381 ..^cfzo 13554 ♯chash 14237 Word cword 14420 〈“cs1 14503 substr csubstr 14548 prefix cpfx 14578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-s1 14504 df-substr 14549 df-pfx 14579 |
| This theorem is referenced by: wrdeqs1cat 14627 pfx1s2 32918 |
| Copyright terms: Public domain | W3C validator |