| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprab2co | Structured version Visualization version GIF version | ||
| Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.) |
| Ref | Expression |
|---|---|
| oprab2co.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑅) |
| oprab2co.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑆) |
| oprab2co.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈𝐶, 𝐷〉) |
| oprab2co.4 | ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) |
| Ref | Expression |
|---|---|
| oprab2co | ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprab2co.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑅) | |
| 2 | oprab2co.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑆) | |
| 3 | 1, 2 | opelxpd 5704 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝑅 × 𝑆)) |
| 4 | oprab2co.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈𝐶, 𝐷〉) | |
| 5 | oprab2co.4 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) | |
| 6 | df-ov 7415 | . . . . 5 ⊢ (𝐶𝑀𝐷) = (𝑀‘〈𝐶, 𝐷〉) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐶𝑀𝐷) = (𝑀‘〈𝐶, 𝐷〉)) |
| 8 | 7 | mpoeq3ia 7492 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑀‘〈𝐶, 𝐷〉)) |
| 9 | 5, 8 | eqtri 2757 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑀‘〈𝐶, 𝐷〉)) |
| 10 | 3, 4, 9 | oprabco 8102 | 1 ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4612 × cxp 5663 ∘ ccom 5669 Fn wfn 6535 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |