MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprab2co Structured version   Visualization version   GIF version

Theorem oprab2co 8077
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
Hypotheses
Ref Expression
oprab2co.1 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
oprab2co.2 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
oprab2co.3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
oprab2co.4 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
Assertion
Ref Expression
oprab2co (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprab2co
StepHypRef Expression
1 oprab2co.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
2 oprab2co.2 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
31, 2opelxpd 5705 . 2 ((𝑥𝐴𝑦𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝑅 × 𝑆))
4 oprab2co.3 . 2 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
5 oprab2co.4 . . 3 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
6 df-ov 7404 . . . . 5 (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩)
76a1i 11 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩))
87mpoeq3ia 7479 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
95, 8eqtri 2752 . 2 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
103, 4, 9oprabco 8076 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cop 4626   × cxp 5664  ccom 5670   Fn wfn 6528  cfv 6533  (class class class)co 7401  cmpo 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator