MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprab2co Structured version   Visualization version   GIF version

Theorem oprab2co 8140
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
Hypotheses
Ref Expression
oprab2co.1 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
oprab2co.2 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
oprab2co.3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
oprab2co.4 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
Assertion
Ref Expression
oprab2co (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprab2co
StepHypRef Expression
1 oprab2co.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
2 oprab2co.2 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
31, 2opelxpd 5739 . 2 ((𝑥𝐴𝑦𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝑅 × 𝑆))
4 oprab2co.3 . 2 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
5 oprab2co.4 . . 3 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
6 df-ov 7453 . . . . 5 (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩)
76a1i 11 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩))
87mpoeq3ia 7530 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
95, 8eqtri 2768 . 2 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
103, 4, 9oprabco 8139 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cop 4654   × cxp 5698  ccom 5704   Fn wfn 6570  cfv 6575  (class class class)co 7450  cmpo 7452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator