| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprabco | Structured version Visualization version GIF version | ||
| Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
| Ref | Expression |
|---|---|
| oprabco.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
| oprabco.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| oprabco.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) |
| Ref | Expression |
|---|---|
| oprabco | ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabco.3 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) | |
| 2 | oprabco.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐻 Fn 𝐷 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) |
| 4 | oprabco.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| 6 | dffn5 6926 | . . . 4 ⊢ (𝐻 Fn 𝐷 ↔ 𝐻 = (𝑧 ∈ 𝐷 ↦ (𝐻‘𝑧))) | |
| 7 | 6 | biimpi 216 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐻 = (𝑧 ∈ 𝐷 ↦ (𝐻‘𝑧))) |
| 8 | fveq2 6865 | . . 3 ⊢ (𝑧 = 𝐶 → (𝐻‘𝑧) = (𝐻‘𝐶)) | |
| 9 | 3, 5, 7, 8 | fmpoco 8083 | . 2 ⊢ (𝐻 Fn 𝐷 → (𝐻 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶))) |
| 10 | 1, 9 | eqtr4id 2784 | 1 ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5196 ∘ ccom 5650 Fn wfn 6514 ‘cfv 6519 ∈ cmpo 7396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 |
| This theorem is referenced by: oprab2co 8085 |
| Copyright terms: Public domain | W3C validator |