Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprabco | Structured version Visualization version GIF version |
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
Ref | Expression |
---|---|
oprabco.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
oprabco.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
oprabco.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) |
Ref | Expression |
---|---|
oprabco | ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabco.3 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) | |
2 | oprabco.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) | |
3 | 2 | adantl 485 | . . 3 ⊢ ((𝐻 Fn 𝐷 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) |
4 | oprabco.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
6 | dffn5 6722 | . . . 4 ⊢ (𝐻 Fn 𝐷 ↔ 𝐻 = (𝑧 ∈ 𝐷 ↦ (𝐻‘𝑧))) | |
7 | 6 | biimpi 219 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐻 = (𝑧 ∈ 𝐷 ↦ (𝐻‘𝑧))) |
8 | fveq2 6668 | . . 3 ⊢ (𝑧 = 𝐶 → (𝐻‘𝑧) = (𝐻‘𝐶)) | |
9 | 3, 5, 7, 8 | fmpoco 7809 | . 2 ⊢ (𝐻 Fn 𝐷 → (𝐻 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶))) |
10 | 1, 9 | eqtr4id 2792 | 1 ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ↦ cmpt 5107 ∘ ccom 5523 Fn wfn 6328 ‘cfv 6333 ∈ cmpo 7166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-fv 6341 df-oprab 7168 df-mpo 7169 df-1st 7707 df-2nd 7708 |
This theorem is referenced by: oprab2co 7811 |
Copyright terms: Public domain | W3C validator |