MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabco Structured version   Visualization version   GIF version

Theorem oprabco 8035
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
oprabco.1 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
oprabco.2 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
oprabco.3 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))
Assertion
Ref Expression
oprabco (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprabco
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oprabco.3 . 2 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))
2 oprabco.1 . . . 4 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
32adantl 481 . . 3 ((𝐻 Fn 𝐷 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝐷)
4 oprabco.2 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
54a1i 11 . . 3 (𝐻 Fn 𝐷𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
6 dffn5 6889 . . . 4 (𝐻 Fn 𝐷𝐻 = (𝑧𝐷 ↦ (𝐻𝑧)))
76biimpi 216 . . 3 (𝐻 Fn 𝐷𝐻 = (𝑧𝐷 ↦ (𝐻𝑧)))
8 fveq2 6831 . . 3 (𝑧 = 𝐶 → (𝐻𝑧) = (𝐻𝐶))
93, 5, 7, 8fmpoco 8034 . 2 (𝐻 Fn 𝐷 → (𝐻𝐹) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶)))
101, 9eqtr4id 2787 1 (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5176  ccom 5625   Fn wfn 6484  cfv 6489  cmpo 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931
This theorem is referenced by:  oprab2co  8036
  Copyright terms: Public domain W3C validator