![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprabco | Structured version Visualization version GIF version |
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
Ref | Expression |
---|---|
oprabco.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
oprabco.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
oprabco.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) |
Ref | Expression |
---|---|
oprabco | ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabco.3 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) | |
2 | oprabco.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐻 Fn 𝐷 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) |
4 | oprabco.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
6 | dffn5 6982 | . . . 4 ⊢ (𝐻 Fn 𝐷 ↔ 𝐻 = (𝑧 ∈ 𝐷 ↦ (𝐻‘𝑧))) | |
7 | 6 | biimpi 216 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐻 = (𝑧 ∈ 𝐷 ↦ (𝐻‘𝑧))) |
8 | fveq2 6922 | . . 3 ⊢ (𝑧 = 𝐶 → (𝐻‘𝑧) = (𝐻‘𝐶)) | |
9 | 3, 5, 7, 8 | fmpoco 8138 | . 2 ⊢ (𝐻 Fn 𝐷 → (𝐻 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶))) |
10 | 1, 9 | eqtr4id 2799 | 1 ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ∘ ccom 5704 Fn wfn 6570 ‘cfv 6575 ∈ cmpo 7452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 |
This theorem is referenced by: oprab2co 8140 |
Copyright terms: Public domain | W3C validator |