MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaord Structured version   Visualization version   GIF version

Theorem nnaord 8658
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaord ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem nnaord
StepHypRef Expression
1 nnaordi 8657 . . 3 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
213adant1 1130 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
3 oveq2 7440 . . . . . 6 (𝐴 = 𝐵 → (𝐶 +o 𝐴) = (𝐶 +o 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 = 𝐵 → (𝐶 +o 𝐴) = (𝐶 +o 𝐵)))
5 nnaordi 8657 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 → (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
653adant2 1131 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 → (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
74, 6orim12d 966 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
87con3d 152 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 df-3an 1088 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω))
10 ancom 460 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) ↔ (𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
11 anandi 676 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ↔ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)))
129, 10, 113bitri 297 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)))
13 nnacl 8650 . . . . . . 7 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +o 𝐴) ∈ ω)
14 nnord 7896 . . . . . . 7 ((𝐶 +o 𝐴) ∈ ω → Ord (𝐶 +o 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → Ord (𝐶 +o 𝐴))
16 nnacl 8650 . . . . . . 7 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 +o 𝐵) ∈ ω)
17 nnord 7896 . . . . . . 7 ((𝐶 +o 𝐵) ∈ ω → Ord (𝐶 +o 𝐵))
1816, 17syl 17 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → Ord (𝐶 +o 𝐵))
1915, 18anim12i 613 . . . . 5 (((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)) → (Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)))
2012, 19sylbi 217 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)))
21 ordtri2 6418 . . . 4 ((Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) ↔ ¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
2220, 21syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) ↔ ¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
23 nnord 7896 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
24 nnord 7896 . . . . . 6 (𝐵 ∈ ω → Ord 𝐵)
2523, 24anim12i 613 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (Ord 𝐴 ∧ Ord 𝐵))
26253adant3 1132 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (Ord 𝐴 ∧ Ord 𝐵))
27 ordtri2 6418 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2826, 27syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
298, 22, 283imtr4d 294 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) → 𝐴𝐵))
302, 29impbid 212 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  Ord word 6382  (class class class)co 7432  ωcom 7888   +o coa 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-oadd 8511
This theorem is referenced by:  nnaordr  8659  nnaword  8666  nnaordex  8677  nnneo  8694  unfilem1  9344  ttrcltr  9757  ltapi  10944  1lt2pi  10946
  Copyright terms: Public domain W3C validator