Proof of Theorem oeord
| Step | Hyp | Ref
| Expression |
| 1 | | oeordi 8604 |
. . 3
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐴
∈ 𝐵 → (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) |
| 2 | 1 | 3adant1 1130 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐴
∈ 𝐵 → (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) |
| 3 | | oveq2 7418 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)) |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐴 =
𝐵 → (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵))) |
| 5 | | oeordi 8604 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐵
∈ 𝐴 → (𝐶 ↑o 𝐵) ∈ (𝐶 ↑o 𝐴))) |
| 6 | 5 | 3adant2 1131 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐵
∈ 𝐴 → (𝐶 ↑o 𝐵) ∈ (𝐶 ↑o 𝐴))) |
| 7 | 4, 6 | orim12d 966 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → ((𝐴
= 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐵) ∈ (𝐶 ↑o 𝐴)))) |
| 8 | 7 | con3d 152 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (¬ ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐵) ∈ (𝐶 ↑o 𝐴)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 9 | | eldifi 4111 |
. . . . . 6
⊢ (𝐶 ∈ (On ∖
2o) → 𝐶
∈ On) |
| 10 | 9 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → 𝐶
∈ On) |
| 11 | | simp1 1136 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → 𝐴
∈ On) |
| 12 | | oecl 8554 |
. . . . 5
⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ↑o 𝐴) ∈ On) |
| 13 | 10, 11, 12 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐶
↑o 𝐴)
∈ On) |
| 14 | | simp2 1137 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → 𝐵
∈ On) |
| 15 | | oecl 8554 |
. . . . 5
⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ↑o 𝐵) ∈ On) |
| 16 | 10, 14, 15 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐶
↑o 𝐵)
∈ On) |
| 17 | | eloni 6367 |
. . . . 5
⊢ ((𝐶 ↑o 𝐴) ∈ On → Ord (𝐶 ↑o 𝐴)) |
| 18 | | eloni 6367 |
. . . . 5
⊢ ((𝐶 ↑o 𝐵) ∈ On → Ord (𝐶 ↑o 𝐵)) |
| 19 | | ordtri2 6392 |
. . . . 5
⊢ ((Ord
(𝐶 ↑o 𝐴) ∧ Ord (𝐶 ↑o 𝐵)) → ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ↔ ¬ ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐵) ∈ (𝐶 ↑o 𝐴)))) |
| 20 | 17, 18, 19 | syl2an 596 |
. . . 4
⊢ (((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On) → ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ↔ ¬ ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐵) ∈ (𝐶 ↑o 𝐴)))) |
| 21 | 13, 16, 20 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → ((𝐶
↑o 𝐴)
∈ (𝐶
↑o 𝐵)
↔ ¬ ((𝐶
↑o 𝐴) =
(𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐵) ∈ (𝐶 ↑o 𝐴)))) |
| 22 | | eloni 6367 |
. . . . 5
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 23 | | eloni 6367 |
. . . . 5
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 24 | | ordtri2 6392 |
. . . . 5
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 25 | 22, 23, 24 | syl2an 596 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 26 | 25 | 3adant3 1132 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐴
∈ 𝐵 ↔ ¬
(𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 27 | 8, 21, 26 | 3imtr4d 294 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → ((𝐶
↑o 𝐴)
∈ (𝐶
↑o 𝐵)
→ 𝐴 ∈ 𝐵)) |
| 28 | 2, 27 | impbid 212 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖
2o)) → (𝐴
∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) |