MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeord Structured version   Visualization version   GIF version

Theorem oeord 8498
Description: Ordering property of ordinal exponentiation. Corollary 8.34 of [TakeutiZaring] p. 68 and its converse. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeord ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐶o 𝐴) ∈ (𝐶o 𝐵)))

Proof of Theorem oeord
StepHypRef Expression
1 oeordi 8497 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
213adant1 1130 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
3 oveq2 7349 . . . . . 6 (𝐴 = 𝐵 → (𝐶o 𝐴) = (𝐶o 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 = 𝐵 → (𝐶o 𝐴) = (𝐶o 𝐵)))
5 oeordi 8497 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐵𝐴 → (𝐶o 𝐵) ∈ (𝐶o 𝐴)))
653adant2 1131 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐵𝐴 → (𝐶o 𝐵) ∈ (𝐶o 𝐴)))
74, 6orim12d 966 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶o 𝐴) = (𝐶o 𝐵) ∨ (𝐶o 𝐵) ∈ (𝐶o 𝐴))))
87con3d 152 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (¬ ((𝐶o 𝐴) = (𝐶o 𝐵) ∨ (𝐶o 𝐵) ∈ (𝐶o 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 eldifi 4079 . . . . . 6 (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On)
1093ad2ant3 1135 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → 𝐶 ∈ On)
11 simp1 1136 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → 𝐴 ∈ On)
12 oecl 8447 . . . . 5 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
1310, 11, 12syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝐴) ∈ On)
14 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → 𝐵 ∈ On)
15 oecl 8447 . . . . 5 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶o 𝐵) ∈ On)
1610, 14, 15syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝐵) ∈ On)
17 eloni 6312 . . . . 5 ((𝐶o 𝐴) ∈ On → Ord (𝐶o 𝐴))
18 eloni 6312 . . . . 5 ((𝐶o 𝐵) ∈ On → Ord (𝐶o 𝐵))
19 ordtri2 6337 . . . . 5 ((Ord (𝐶o 𝐴) ∧ Ord (𝐶o 𝐵)) → ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ↔ ¬ ((𝐶o 𝐴) = (𝐶o 𝐵) ∨ (𝐶o 𝐵) ∈ (𝐶o 𝐴))))
2017, 18, 19syl2an 596 . . . 4 (((𝐶o 𝐴) ∈ On ∧ (𝐶o 𝐵) ∈ On) → ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ↔ ¬ ((𝐶o 𝐴) = (𝐶o 𝐵) ∨ (𝐶o 𝐵) ∈ (𝐶o 𝐴))))
2113, 16, 20syl2anc 584 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ↔ ¬ ((𝐶o 𝐴) = (𝐶o 𝐵) ∨ (𝐶o 𝐵) ∈ (𝐶o 𝐴))))
22 eloni 6312 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
23 eloni 6312 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
24 ordtri2 6337 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2522, 23, 24syl2an 596 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
26253adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
278, 21, 263imtr4d 294 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ∈ (𝐶o 𝐵) → 𝐴𝐵))
282, 27impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847  w3a 1086   = wceq 1541  wcel 2110  cdif 3897  Ord word 6301  Oncon0 6302  (class class class)co 7341  2oc2o 8374  o coe 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-oexp 8386
This theorem is referenced by:  oeword  8500  oeeui  8512  omabs  8561  cantnflem3  9576  oeord2com  43323  omabs2  43344
  Copyright terms: Public domain W3C validator