MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord Structured version   Visualization version   GIF version

Theorem oaord 8465
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaord ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem oaord
StepHypRef Expression
1 oaordi 8464 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
213adant1 1130 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
3 oveq2 7357 . . . . . 6 (𝐴 = 𝐵 → (𝐶 +o 𝐴) = (𝐶 +o 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 = 𝐵 → (𝐶 +o 𝐴) = (𝐶 +o 𝐵)))
5 oaordi 8464 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
653adant2 1131 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
74, 6orim12d 966 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
87con3d 152 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 df-3an 1088 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On))
10 ancom 460 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ↔ (𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)))
11 anandi 676 . . . . . 6 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
129, 10, 113bitri 297 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
13 oacl 8453 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ On)
14 eloni 6317 . . . . . . 7 ((𝐶 +o 𝐴) ∈ On → Ord (𝐶 +o 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → Ord (𝐶 +o 𝐴))
16 oacl 8453 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) ∈ On)
17 eloni 6317 . . . . . . 7 ((𝐶 +o 𝐵) ∈ On → Ord (𝐶 +o 𝐵))
1816, 17syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐶 +o 𝐵))
1915, 18anim12i 613 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)) → (Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)))
2012, 19sylbi 217 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)))
21 ordtri2 6342 . . . 4 ((Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) ↔ ¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) ↔ ¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
23 eloni 6317 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
24 eloni 6317 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
2523, 24anim12i 613 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
26253adant3 1132 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
27 ordtri2 6342 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2826, 27syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
298, 22, 283imtr4d 294 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) → 𝐴𝐵))
302, 29impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  Ord word 6306  Oncon0 6307  (class class class)co 7349   +o coa 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392
This theorem is referenced by:  oacan  8466  oaword  8467  oaord1  8469  oa00  8477  oalimcl  8478  oaass  8479  odi  8497  oneo  8499  omeulem1  8500  omeulem2  8501  oeeui  8520  omxpenlem  8995  cantnflt  9568  cantnflem1d  9584  cantnflem1  9585  oaord3  43275  oawordex2  43309
  Copyright terms: Public domain W3C validator