MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord Structured version   Visualization version   GIF version

Theorem oaord 8559
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaord ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem oaord
StepHypRef Expression
1 oaordi 8558 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
213adant1 1130 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
3 oveq2 7413 . . . . . 6 (𝐴 = 𝐵 → (𝐶 +o 𝐴) = (𝐶 +o 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 = 𝐵 → (𝐶 +o 𝐴) = (𝐶 +o 𝐵)))
5 oaordi 8558 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
653adant2 1131 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
74, 6orim12d 966 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
87con3d 152 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 df-3an 1088 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On))
10 ancom 460 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ↔ (𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)))
11 anandi 676 . . . . . 6 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
129, 10, 113bitri 297 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
13 oacl 8547 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ On)
14 eloni 6362 . . . . . . 7 ((𝐶 +o 𝐴) ∈ On → Ord (𝐶 +o 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → Ord (𝐶 +o 𝐴))
16 oacl 8547 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) ∈ On)
17 eloni 6362 . . . . . . 7 ((𝐶 +o 𝐵) ∈ On → Ord (𝐶 +o 𝐵))
1816, 17syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐶 +o 𝐵))
1915, 18anim12i 613 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)) → (Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)))
2012, 19sylbi 217 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)))
21 ordtri2 6387 . . . 4 ((Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) ↔ ¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) ↔ ¬ ((𝐶 +o 𝐴) = (𝐶 +o 𝐵) ∨ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))))
23 eloni 6362 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
24 eloni 6362 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
2523, 24anim12i 613 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
26253adant3 1132 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
27 ordtri2 6387 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2826, 27syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
298, 22, 283imtr4d 294 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵) → 𝐴𝐵))
302, 29impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  Ord word 6351  Oncon0 6352  (class class class)co 7405   +o coa 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484
This theorem is referenced by:  oacan  8560  oaword  8561  oaord1  8563  oa00  8571  oalimcl  8572  oaass  8573  odi  8591  oneo  8593  omeulem1  8594  omeulem2  8595  oeeui  8614  omxpenlem  9087  cantnflt  9686  cantnflem1d  9702  cantnflem1  9703  oaord3  43316  oawordex2  43350
  Copyright terms: Public domain W3C validator