Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxline Structured version   Visualization version   GIF version

Theorem rrxline 44955
 Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
rrxlines.e 𝐸 = (ℝ^‘𝐼)
rrxlines.p 𝑃 = (ℝ ↑m 𝐼)
rrxlines.l 𝐿 = (LineM𝐸)
rrxlines.m · = ( ·𝑠𝐸)
rrxlines.a + = (+g𝐸)
Assertion
Ref Expression
rrxline ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝐼,𝑝,𝑡   𝑃,𝑝   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝑃(𝑡)   + (𝑡,𝑝)   · (𝑡,𝑝)   𝐿(𝑡,𝑝)

Proof of Theorem rrxline
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxlines.e . . . . 5 𝐸 = (ℝ^‘𝐼)
2 rrxlines.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
3 rrxlines.l . . . . 5 𝐿 = (LineM𝐸)
4 rrxlines.m . . . . 5 · = ( ·𝑠𝐸)
5 rrxlines.a . . . . 5 + = (+g𝐸)
61, 2, 3, 4, 5rrxlines 44954 . . . 4 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
76oveqd 7147 . . 3 (𝐼 ∈ Fin → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
87adantr 484 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
9 eqidd 2822 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
10 simpl 486 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1110oveq2d 7146 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → ((1 − 𝑡) · 𝑥) = ((1 − 𝑡) · 𝑋))
12 simpr 488 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1312oveq2d 7146 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑡 · 𝑦) = (𝑡 · 𝑌))
1411, 13oveq12d 7148 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))
1514eqeq2d 2832 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1615rexbidv 3283 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1716rabbidv 3457 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
1817adantl 485 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
19 sneq 4550 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019difeq2d 4075 . . . 4 (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
2120adantl 485 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑥 = 𝑋) → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
22 simpr1 1191 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑋𝑃)
23 id 22 . . . . . . . 8 (𝑋𝑌𝑋𝑌)
2423necomd 3062 . . . . . . 7 (𝑋𝑌𝑌𝑋)
2524anim2i 619 . . . . . 6 ((𝑌𝑃𝑋𝑌) → (𝑌𝑃𝑌𝑋))
26253adant1 1127 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌𝑃𝑌𝑋))
27 eldifsn 4692 . . . . 5 (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌𝑃𝑌𝑋))
2826, 27sylibr 237 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑌 ∈ (𝑃 ∖ {𝑋}))
2928adantl 485 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑌 ∈ (𝑃 ∖ {𝑋}))
302ovexi 7164 . . . . 5 𝑃 ∈ V
3130rabex 5208 . . . 4 {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V
3231a1i 11 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V)
339, 18, 21, 22, 29, 32ovmpodx 7275 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
348, 33eqtrd 2856 1 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∃wrex 3127  {crab 3130  Vcvv 3471   ∖ cdif 3907  {csn 4540  ‘cfv 6328  (class class class)co 7130   ∈ cmpo 7132   ↑m cmap 8381  Fincfn 8484  ℝcr 10513  1c1 10515   − cmin 10847  +gcplusg 16544   ·𝑠 cvsca 16548  ℝ^crrx 23966  LineMcline 44948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-rp 12368  df-fz 12876  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-0g 16694  df-prds 16700  df-pws 16702  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-cmn 18887  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-drng 19480  df-field 19481  df-subrg 19509  df-sra 19920  df-rgmod 19921  df-cnfld 20522  df-refld 20725  df-dsmm 20852  df-frlm 20867  df-tng 23170  df-tcph 23753  df-rrx 23968  df-line 44950 This theorem is referenced by:  rrxlinec  44957
 Copyright terms: Public domain W3C validator