| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxline | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxlines.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrxlines.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrxlines.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrxlines.m | ⊢ · = ( ·𝑠 ‘𝐸) |
| rrxlines.a | ⊢ + = (+g‘𝐸) |
| Ref | Expression |
|---|---|
| rrxline | ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxlines.e | . . . . 5 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 2 | rrxlines.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | rrxlines.l | . . . . 5 ⊢ 𝐿 = (LineM‘𝐸) | |
| 4 | rrxlines.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐸) | |
| 5 | rrxlines.a | . . . . 5 ⊢ + = (+g‘𝐸) | |
| 6 | 1, 2, 3, 4, 5 | rrxlines 48713 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 7 | 6 | oveqd 7422 | . . 3 ⊢ (𝐼 ∈ Fin → (𝑋𝐿𝑌) = (𝑋(𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌)) |
| 9 | eqidd 2736 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) | |
| 10 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 11 | 10 | oveq2d 7421 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((1 − 𝑡) · 𝑥) = ((1 − 𝑡) · 𝑋)) |
| 12 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 13 | 12 | oveq2d 7421 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑡 · 𝑦) = (𝑡 · 𝑌)) |
| 14 | 11, 13 | oveq12d 7423 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))) |
| 15 | 14 | eqeq2d 2746 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))) |
| 16 | 15 | rexbidv 3164 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))) |
| 17 | 16 | rabbidv 3423 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| 18 | 17 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| 19 | sneq 4611 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 20 | 19 | difeq2d 4101 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋})) |
| 21 | 20 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑥 = 𝑋) → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋})) |
| 22 | simpr1 1195 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝑃) | |
| 23 | id 22 | . . . . . . . 8 ⊢ (𝑋 ≠ 𝑌 → 𝑋 ≠ 𝑌) | |
| 24 | 23 | necomd 2987 | . . . . . . 7 ⊢ (𝑋 ≠ 𝑌 → 𝑌 ≠ 𝑋) |
| 25 | 24 | anim2i 617 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋)) |
| 26 | 25 | 3adant1 1130 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋)) |
| 27 | eldifsn 4762 | . . . . 5 ⊢ (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋)) | |
| 28 | 26, 27 | sylibr 234 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ (𝑃 ∖ {𝑋})) |
| 29 | 28 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ (𝑃 ∖ {𝑋})) |
| 30 | 2 | ovexi 7439 | . . . . 5 ⊢ 𝑃 ∈ V |
| 31 | 30 | rabex 5309 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V |
| 32 | 31 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V) |
| 33 | 9, 18, 21, 22, 29, 32 | ovmpodx 7558 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋(𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| 34 | 8, 33 | eqtrd 2770 | 1 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 Vcvv 3459 ∖ cdif 3923 {csn 4601 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8840 Fincfn 8959 ℝcr 11128 1c1 11130 − cmin 11466 +gcplusg 17271 ·𝑠 cvsca 17275 ℝ^crrx 25335 LineMcline 48707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-subrng 20506 df-subrg 20530 df-drng 20691 df-field 20692 df-sra 21131 df-rgmod 21132 df-cnfld 21316 df-refld 21565 df-dsmm 21692 df-frlm 21707 df-tng 24523 df-tcph 25121 df-rrx 25337 df-line 48709 |
| This theorem is referenced by: rrxlinec 48716 |
| Copyright terms: Public domain | W3C validator |