| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxline | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxlines.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrxlines.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrxlines.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrxlines.m | ⊢ · = ( ·𝑠 ‘𝐸) |
| rrxlines.a | ⊢ + = (+g‘𝐸) |
| Ref | Expression |
|---|---|
| rrxline | ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxlines.e | . . . . 5 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 2 | rrxlines.p | . . . . 5 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | rrxlines.l | . . . . 5 ⊢ 𝐿 = (LineM‘𝐸) | |
| 4 | rrxlines.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐸) | |
| 5 | rrxlines.a | . . . . 5 ⊢ + = (+g‘𝐸) | |
| 6 | 1, 2, 3, 4, 5 | rrxlines 48722 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 7 | 6 | oveqd 7404 | . . 3 ⊢ (𝐼 ∈ Fin → (𝑋𝐿𝑌) = (𝑋(𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌)) |
| 9 | eqidd 2730 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) | |
| 10 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 11 | 10 | oveq2d 7403 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((1 − 𝑡) · 𝑥) = ((1 − 𝑡) · 𝑋)) |
| 12 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 13 | 12 | oveq2d 7403 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑡 · 𝑦) = (𝑡 · 𝑌)) |
| 14 | 11, 13 | oveq12d 7405 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))) |
| 15 | 14 | eqeq2d 2740 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))) |
| 16 | 15 | rexbidv 3157 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))) |
| 17 | 16 | rabbidv 3413 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| 18 | 17 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| 19 | sneq 4599 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 20 | 19 | difeq2d 4089 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋})) |
| 21 | 20 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑥 = 𝑋) → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋})) |
| 22 | simpr1 1195 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝑃) | |
| 23 | id 22 | . . . . . . . 8 ⊢ (𝑋 ≠ 𝑌 → 𝑋 ≠ 𝑌) | |
| 24 | 23 | necomd 2980 | . . . . . . 7 ⊢ (𝑋 ≠ 𝑌 → 𝑌 ≠ 𝑋) |
| 25 | 24 | anim2i 617 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋)) |
| 26 | 25 | 3adant1 1130 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋)) |
| 27 | eldifsn 4750 | . . . . 5 ⊢ (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋)) | |
| 28 | 26, 27 | sylibr 234 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ (𝑃 ∖ {𝑋})) |
| 29 | 28 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ (𝑃 ∖ {𝑋})) |
| 30 | 2 | ovexi 7421 | . . . . 5 ⊢ 𝑃 ∈ V |
| 31 | 30 | rabex 5294 | . . . 4 ⊢ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V |
| 32 | 31 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V) |
| 33 | 9, 18, 21, 22, 29, 32 | ovmpodx 7540 | . 2 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋(𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| 34 | 8, 33 | eqtrd 2764 | 1 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 Vcvv 3447 ∖ cdif 3911 {csn 4589 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 Fincfn 8918 ℝcr 11067 1c1 11069 − cmin 11405 +gcplusg 17220 ·𝑠 cvsca 17224 ℝ^crrx 25283 LineMcline 48716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-refld 21514 df-dsmm 21641 df-frlm 21656 df-tng 24472 df-tcph 25069 df-rrx 25285 df-line 48718 |
| This theorem is referenced by: rrxlinec 48725 |
| Copyright terms: Public domain | W3C validator |