Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxline Structured version   Visualization version   GIF version

Theorem rrxline 48727
Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
rrxlines.e 𝐸 = (ℝ^‘𝐼)
rrxlines.p 𝑃 = (ℝ ↑m 𝐼)
rrxlines.l 𝐿 = (LineM𝐸)
rrxlines.m · = ( ·𝑠𝐸)
rrxlines.a + = (+g𝐸)
Assertion
Ref Expression
rrxline ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝐼,𝑝,𝑡   𝑃,𝑝   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝑃(𝑡)   + (𝑡,𝑝)   · (𝑡,𝑝)   𝐿(𝑡,𝑝)

Proof of Theorem rrxline
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxlines.e . . . . 5 𝐸 = (ℝ^‘𝐼)
2 rrxlines.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
3 rrxlines.l . . . . 5 𝐿 = (LineM𝐸)
4 rrxlines.m . . . . 5 · = ( ·𝑠𝐸)
5 rrxlines.a . . . . 5 + = (+g𝐸)
61, 2, 3, 4, 5rrxlines 48726 . . . 4 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
76oveqd 7407 . . 3 (𝐼 ∈ Fin → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
87adantr 480 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
9 eqidd 2731 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
10 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1110oveq2d 7406 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → ((1 − 𝑡) · 𝑥) = ((1 − 𝑡) · 𝑋))
12 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1312oveq2d 7406 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑡 · 𝑦) = (𝑡 · 𝑌))
1411, 13oveq12d 7408 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))
1514eqeq2d 2741 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1615rexbidv 3158 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1716rabbidv 3416 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
1817adantl 481 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
19 sneq 4602 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019difeq2d 4092 . . . 4 (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
2120adantl 481 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑥 = 𝑋) → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
22 simpr1 1195 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑋𝑃)
23 id 22 . . . . . . . 8 (𝑋𝑌𝑋𝑌)
2423necomd 2981 . . . . . . 7 (𝑋𝑌𝑌𝑋)
2524anim2i 617 . . . . . 6 ((𝑌𝑃𝑋𝑌) → (𝑌𝑃𝑌𝑋))
26253adant1 1130 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌𝑃𝑌𝑋))
27 eldifsn 4753 . . . . 5 (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌𝑃𝑌𝑋))
2826, 27sylibr 234 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑌 ∈ (𝑃 ∖ {𝑋}))
2928adantl 481 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑌 ∈ (𝑃 ∖ {𝑋}))
302ovexi 7424 . . . . 5 𝑃 ∈ V
3130rabex 5297 . . . 4 {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V
3231a1i 11 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V)
339, 18, 21, 22, 29, 32ovmpodx 7543 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
348, 33eqtrd 2765 1 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  {csn 4592  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Fincfn 8921  cr 11074  1c1 11076  cmin 11412  +gcplusg 17227   ·𝑠 cvsca 17231  ℝ^crrx 25290  LineMcline 48720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-tng 24479  df-tcph 25076  df-rrx 25292  df-line 48722
This theorem is referenced by:  rrxlinec  48729
  Copyright terms: Public domain W3C validator