Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line Structured version   Visualization version   GIF version

Theorem line 48466
Description: The line passing through the two different points 𝑋 and 𝑌 in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
lines.b 𝐵 = (Base‘𝑊)
lines.l 𝐿 = (LineM𝑊)
lines.s 𝑆 = (Scalar‘𝑊)
lines.k 𝐾 = (Base‘𝑆)
lines.p · = ( ·𝑠𝑊)
lines.a + = (+g𝑊)
lines.m = (-g𝑆)
lines.1 1 = (1r𝑆)
Assertion
Ref Expression
line ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Distinct variable groups:   𝐵,𝑝   𝑡,𝐾   𝑡,𝑆   𝑊,𝑝,𝑡   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝐵(𝑡)   + (𝑡,𝑝)   𝑆(𝑝)   · (𝑡,𝑝)   1 (𝑡,𝑝)   𝐾(𝑝)   𝐿(𝑡,𝑝)   (𝑡,𝑝)   𝑉(𝑡,𝑝)

Proof of Theorem line
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lines.b . . . . 5 𝐵 = (Base‘𝑊)
2 lines.l . . . . 5 𝐿 = (LineM𝑊)
3 lines.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 lines.k . . . . 5 𝐾 = (Base‘𝑆)
5 lines.p . . . . 5 · = ( ·𝑠𝑊)
6 lines.a . . . . 5 + = (+g𝑊)
7 lines.m . . . . 5 = (-g𝑆)
8 lines.1 . . . . 5 1 = (1r𝑆)
91, 2, 3, 4, 5, 6, 7, 8lines 48465 . . . 4 (𝑊𝑉𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
109oveqd 7465 . . 3 (𝑊𝑉 → (𝑋𝐿𝑌) = (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
1110adantr 480 . 2 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
12 eqidd 2741 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
13 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑋 → (( 1 𝑡) · 𝑥) = (( 1 𝑡) · 𝑋))
14 oveq2 7456 . . . . . . . 8 (𝑦 = 𝑌 → (𝑡 · 𝑦) = (𝑡 · 𝑌))
1513, 14oveqan12d 7467 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌)))
1615eqeq2d 2751 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1716rexbidv 3185 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1817rabbidv 3451 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
1918adantl 481 . . 3 (((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
20 sneq 4658 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2120difeq2d 4149 . . . 4 (𝑥 = 𝑋 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋}))
2221adantl 481 . . 3 (((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ 𝑥 = 𝑋) → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋}))
23 simpr1 1194 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑋𝐵)
24 id 22 . . . . . . . 8 (𝑋𝑌𝑋𝑌)
2524necomd 3002 . . . . . . 7 (𝑋𝑌𝑌𝑋)
2625anim2i 616 . . . . . 6 ((𝑌𝐵𝑋𝑌) → (𝑌𝐵𝑌𝑋))
27263adant1 1130 . . . . 5 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑌𝐵𝑌𝑋))
28 eldifsn 4811 . . . . 5 (𝑌 ∈ (𝐵 ∖ {𝑋}) ↔ (𝑌𝐵𝑌𝑋))
2927, 28sylibr 234 . . . 4 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
3029adantl 481 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
311fvexi 6934 . . . . 5 𝐵 ∈ V
3231rabex 5357 . . . 4 {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V
3332a1i 11 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V)
3412, 19, 22, 23, 30, 33ovmpodx 7601 . 2 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
3511, 34eqtrd 2780 1 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  {csn 4648  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  -gcsg 18975  1rcur 20208  LineMcline 48461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-line 48463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator