Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line Structured version   Visualization version   GIF version

Theorem line 46078
Description: The line passing through the two different points 𝑋 and 𝑌 in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
lines.b 𝐵 = (Base‘𝑊)
lines.l 𝐿 = (LineM𝑊)
lines.s 𝑆 = (Scalar‘𝑊)
lines.k 𝐾 = (Base‘𝑆)
lines.p · = ( ·𝑠𝑊)
lines.a + = (+g𝑊)
lines.m = (-g𝑆)
lines.1 1 = (1r𝑆)
Assertion
Ref Expression
line ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Distinct variable groups:   𝐵,𝑝   𝑡,𝐾   𝑡,𝑆   𝑊,𝑝,𝑡   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝐵(𝑡)   + (𝑡,𝑝)   𝑆(𝑝)   · (𝑡,𝑝)   1 (𝑡,𝑝)   𝐾(𝑝)   𝐿(𝑡,𝑝)   (𝑡,𝑝)   𝑉(𝑡,𝑝)

Proof of Theorem line
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lines.b . . . . 5 𝐵 = (Base‘𝑊)
2 lines.l . . . . 5 𝐿 = (LineM𝑊)
3 lines.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 lines.k . . . . 5 𝐾 = (Base‘𝑆)
5 lines.p . . . . 5 · = ( ·𝑠𝑊)
6 lines.a . . . . 5 + = (+g𝑊)
7 lines.m . . . . 5 = (-g𝑆)
8 lines.1 . . . . 5 1 = (1r𝑆)
91, 2, 3, 4, 5, 6, 7, 8lines 46077 . . . 4 (𝑊𝑉𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
109oveqd 7292 . . 3 (𝑊𝑉 → (𝑋𝐿𝑌) = (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
1110adantr 481 . 2 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
12 eqidd 2739 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
13 oveq2 7283 . . . . . . . 8 (𝑥 = 𝑋 → (( 1 𝑡) · 𝑥) = (( 1 𝑡) · 𝑋))
14 oveq2 7283 . . . . . . . 8 (𝑦 = 𝑌 → (𝑡 · 𝑦) = (𝑡 · 𝑌))
1513, 14oveqan12d 7294 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌)))
1615eqeq2d 2749 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1716rexbidv 3226 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1817rabbidv 3414 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
1918adantl 482 . . 3 (((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
20 sneq 4571 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2120difeq2d 4057 . . . 4 (𝑥 = 𝑋 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋}))
2221adantl 482 . . 3 (((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ 𝑥 = 𝑋) → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋}))
23 simpr1 1193 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑋𝐵)
24 id 22 . . . . . . . 8 (𝑋𝑌𝑋𝑌)
2524necomd 2999 . . . . . . 7 (𝑋𝑌𝑌𝑋)
2625anim2i 617 . . . . . 6 ((𝑌𝐵𝑋𝑌) → (𝑌𝐵𝑌𝑋))
27263adant1 1129 . . . . 5 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑌𝐵𝑌𝑋))
28 eldifsn 4720 . . . . 5 (𝑌 ∈ (𝐵 ∖ {𝑋}) ↔ (𝑌𝐵𝑌𝑋))
2927, 28sylibr 233 . . . 4 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
3029adantl 482 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
311fvexi 6788 . . . . 5 𝐵 ∈ V
3231rabex 5256 . . . 4 {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V
3332a1i 11 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V)
3412, 19, 22, 23, 30, 33ovmpodx 7424 . 2 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
3511, 34eqtrd 2778 1 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  -gcsg 18579  1rcur 19737  LineMcline 46073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-line 46075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator