Step | Hyp | Ref
| Expression |
1 | | lines.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑊) |
2 | | lines.l |
. . . . 5
⊢ 𝐿 = (LineM‘𝑊) |
3 | | lines.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑊) |
4 | | lines.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑆) |
5 | | lines.p |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
6 | | lines.a |
. . . . 5
⊢ + =
(+g‘𝑊) |
7 | | lines.m |
. . . . 5
⊢ − =
(-g‘𝑆) |
8 | | lines.1 |
. . . . 5
⊢ 1 =
(1r‘𝑆) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lines 46077 |
. . . 4
⊢ (𝑊 ∈ 𝑉 → 𝐿 = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
10 | 9 | oveqd 7292 |
. . 3
⊢ (𝑊 ∈ 𝑉 → (𝑋𝐿𝑌) = (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌)) |
11 | 10 | adantr 481 |
. 2
⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌)) |
12 | | eqidd 2739 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
13 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (( 1 − 𝑡) · 𝑥) = (( 1 − 𝑡) · 𝑋)) |
14 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝑡 · 𝑦) = (𝑡 · 𝑌)) |
15 | 13, 14 | oveqan12d 7294 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))) |
16 | 15 | eqeq2d 2749 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))) |
17 | 16 | rexbidv 3226 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))) |
18 | 17 | rabbidv 3414 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
19 | 18 | adantl 482 |
. . 3
⊢ (((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
20 | | sneq 4571 |
. . . . 5
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
21 | 20 | difeq2d 4057 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋})) |
22 | 21 | adantl 482 |
. . 3
⊢ (((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑥 = 𝑋) → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋})) |
23 | | simpr1 1193 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝐵) |
24 | | id 22 |
. . . . . . . 8
⊢ (𝑋 ≠ 𝑌 → 𝑋 ≠ 𝑌) |
25 | 24 | necomd 2999 |
. . . . . . 7
⊢ (𝑋 ≠ 𝑌 → 𝑌 ≠ 𝑋) |
26 | 25 | anim2i 617 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 𝑋)) |
27 | 26 | 3adant1 1129 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 𝑋)) |
28 | | eldifsn 4720 |
. . . . 5
⊢ (𝑌 ∈ (𝐵 ∖ {𝑋}) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 𝑋)) |
29 | 27, 28 | sylibr 233 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
30 | 29 | adantl 482 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
31 | 1 | fvexi 6788 |
. . . . 5
⊢ 𝐵 ∈ V |
32 | 31 | rabex 5256 |
. . . 4
⊢ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V |
33 | 32 | a1i 11 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V) |
34 | 12, 19, 22, 23, 30, 33 | ovmpodx 7424 |
. 2
⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑋(𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |
35 | 11, 34 | eqtrd 2778 |
1
⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) |