Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line Structured version   Visualization version   GIF version

Theorem line 47631
Description: The line passing through the two different points 𝑋 and π‘Œ in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
lines.b 𝐡 = (Baseβ€˜π‘Š)
lines.l 𝐿 = (LineMβ€˜π‘Š)
lines.s 𝑆 = (Scalarβ€˜π‘Š)
lines.k 𝐾 = (Baseβ€˜π‘†)
lines.p Β· = ( ·𝑠 β€˜π‘Š)
lines.a + = (+gβ€˜π‘Š)
lines.m βˆ’ = (-gβ€˜π‘†)
lines.1 1 = (1rβ€˜π‘†)
Assertion
Ref Expression
line ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ (π‘‹πΏπ‘Œ) = {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))})
Distinct variable groups:   𝐡,𝑝   𝑑,𝐾   𝑑,𝑆   π‘Š,𝑝,𝑑   𝑋,𝑝,𝑑   π‘Œ,𝑝,𝑑
Allowed substitution hints:   𝐡(𝑑)   + (𝑑,𝑝)   𝑆(𝑝)   Β· (𝑑,𝑝)   1 (𝑑,𝑝)   𝐾(𝑝)   𝐿(𝑑,𝑝)   βˆ’ (𝑑,𝑝)   𝑉(𝑑,𝑝)

Proof of Theorem line
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lines.b . . . . 5 𝐡 = (Baseβ€˜π‘Š)
2 lines.l . . . . 5 𝐿 = (LineMβ€˜π‘Š)
3 lines.s . . . . 5 𝑆 = (Scalarβ€˜π‘Š)
4 lines.k . . . . 5 𝐾 = (Baseβ€˜π‘†)
5 lines.p . . . . 5 Β· = ( ·𝑠 β€˜π‘Š)
6 lines.a . . . . 5 + = (+gβ€˜π‘Š)
7 lines.m . . . . 5 βˆ’ = (-gβ€˜π‘†)
8 lines.1 . . . . 5 1 = (1rβ€˜π‘†)
91, 2, 3, 4, 5, 6, 7, 8lines 47630 . . . 4 (π‘Š ∈ 𝑉 β†’ 𝐿 = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}))
109oveqd 7419 . . 3 (π‘Š ∈ 𝑉 β†’ (π‘‹πΏπ‘Œ) = (𝑋(π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))})π‘Œ))
1110adantr 480 . 2 ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ (π‘‹πΏπ‘Œ) = (𝑋(π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))})π‘Œ))
12 eqidd 2725 . . 3 ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}))
13 oveq2 7410 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (( 1 βˆ’ 𝑑) Β· π‘₯) = (( 1 βˆ’ 𝑑) Β· 𝑋))
14 oveq2 7410 . . . . . . . 8 (𝑦 = π‘Œ β†’ (𝑑 Β· 𝑦) = (𝑑 Β· π‘Œ))
1513, 14oveqan12d 7421 . . . . . . 7 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦)) = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ)))
1615eqeq2d 2735 . . . . . 6 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦)) ↔ 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))))
1716rexbidv 3170 . . . . 5 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦)) ↔ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))))
1817rabbidv 3432 . . . 4 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))} = {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))})
1918adantl 481 . . 3 (((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))} = {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))})
20 sneq 4631 . . . . 5 (π‘₯ = 𝑋 β†’ {π‘₯} = {𝑋})
2120difeq2d 4115 . . . 4 (π‘₯ = 𝑋 β†’ (𝐡 βˆ– {π‘₯}) = (𝐡 βˆ– {𝑋}))
2221adantl 481 . . 3 (((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) ∧ π‘₯ = 𝑋) β†’ (𝐡 βˆ– {π‘₯}) = (𝐡 βˆ– {𝑋}))
23 simpr1 1191 . . 3 ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ 𝑋 ∈ 𝐡)
24 id 22 . . . . . . . 8 (𝑋 β‰  π‘Œ β†’ 𝑋 β‰  π‘Œ)
2524necomd 2988 . . . . . . 7 (𝑋 β‰  π‘Œ β†’ π‘Œ β‰  𝑋)
2625anim2i 616 . . . . . 6 ((π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ) β†’ (π‘Œ ∈ 𝐡 ∧ π‘Œ β‰  𝑋))
27263adant1 1127 . . . . 5 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ) β†’ (π‘Œ ∈ 𝐡 ∧ π‘Œ β‰  𝑋))
28 eldifsn 4783 . . . . 5 (π‘Œ ∈ (𝐡 βˆ– {𝑋}) ↔ (π‘Œ ∈ 𝐡 ∧ π‘Œ β‰  𝑋))
2927, 28sylibr 233 . . . 4 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ) β†’ π‘Œ ∈ (𝐡 βˆ– {𝑋}))
3029adantl 481 . . 3 ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ π‘Œ ∈ (𝐡 βˆ– {𝑋}))
311fvexi 6896 . . . . 5 𝐡 ∈ V
3231rabex 5323 . . . 4 {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))} ∈ V
3332a1i 11 . . 3 ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))} ∈ V)
3412, 19, 22, 23, 30, 33ovmpodx 7552 . 2 ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ (𝑋(π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))})π‘Œ) = {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))})
3511, 34eqtrd 2764 1 ((π‘Š ∈ 𝑉 ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 β‰  π‘Œ)) β†’ (π‘‹πΏπ‘Œ) = {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· 𝑋) + (𝑑 Β· π‘Œ))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆƒwrex 3062  {crab 3424  Vcvv 3466   βˆ– cdif 3938  {csn 4621  β€˜cfv 6534  (class class class)co 7402   ∈ cmpo 7404  Basecbs 17145  +gcplusg 17198  Scalarcsca 17201   ·𝑠 cvsca 17202  -gcsg 18857  1rcur 20078  LineMcline 47626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-line 47628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator