Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fgval | Structured version Visualization version GIF version |
Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fgval | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fg 20693 | . . 3 ⊢ filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})) |
3 | pweq 4560 | . . . . 5 ⊢ (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋) |
5 | ineq1 4151 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
6 | 5 | neeq1d 3000 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
7 | 6 | adantl 482 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
8 | 4, 7 | rabeqbidv 3420 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
9 | 8 | adantl 482 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋 ∧ 𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
10 | fveq2 6819 | . . 3 ⊢ (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋)) | |
11 | 10 | adantl 482 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋)) |
12 | elfvex 6857 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V) | |
13 | id 22 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
14 | elfvdm 6856 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
15 | pwexg 5318 | . . 3 ⊢ (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V) | |
16 | rabexg 5272 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) | |
17 | 14, 15, 16 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) |
18 | 2, 9, 11, 12, 13, 17 | ovmpodx 7478 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {crab 3403 Vcvv 3441 ∩ cin 3896 ∅c0 4268 𝒫 cpw 4546 dom cdm 5614 ‘cfv 6473 (class class class)co 7329 ∈ cmpo 7331 fBascfbas 20683 filGencfg 20684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-fg 20693 |
This theorem is referenced by: elfg 23120 restmetu 23824 neifg 34651 |
Copyright terms: Public domain | W3C validator |