MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgval Structured version   Visualization version   GIF version

Theorem fgval 23805
Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgval (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fgval
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fg 21298 . . 3 filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})
21a1i 11 . 2 (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}))
3 pweq 4565 . . . . 5 (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋)
43adantr 480 . . . 4 ((𝑣 = 𝑋𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋)
5 ineq1 4162 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥))
65neeq1d 2988 . . . . 5 (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
76adantl 481 . . . 4 ((𝑣 = 𝑋𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
84, 7rabeqbidv 3414 . . 3 ((𝑣 = 𝑋𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
98adantl 481 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
10 fveq2 6831 . . 3 (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋))
1110adantl 481 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋))
12 elfvex 6866 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
13 id 22 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
14 elfvdm 6865 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
15 pwexg 5320 . . 3 (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V)
16 rabexg 5279 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V)
1714, 15, 163syl 18 . 2 (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V)
182, 9, 11, 12, 13, 17ovmpodx 7506 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  {crab 3396  Vcvv 3437  cin 3897  c0 4282  𝒫 cpw 4551  dom cdm 5621  cfv 6489  (class class class)co 7355  cmpo 7357  fBascfbas 21288  filGencfg 21289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-fg 21298
This theorem is referenced by:  elfg  23806  restmetu  24505  neifg  36487
  Copyright terms: Public domain W3C validator