| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgval | Structured version Visualization version GIF version | ||
| Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgval | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg 21284 | . . 3 ⊢ filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})) |
| 3 | pweq 4559 | . . . . 5 ⊢ (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋) |
| 5 | ineq1 4158 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
| 6 | 5 | neeq1d 2987 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
| 8 | 4, 7 | rabeqbidv 3413 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋 ∧ 𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| 10 | fveq2 6817 | . . 3 ⊢ (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋)) | |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋)) |
| 12 | elfvex 6852 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V) | |
| 13 | id 22 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 14 | elfvdm 6851 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 15 | pwexg 5311 | . . 3 ⊢ (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V) | |
| 16 | rabexg 5270 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) | |
| 17 | 14, 15, 16 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) |
| 18 | 2, 9, 11, 12, 13, 17 | ovmpodx 7492 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ∩ cin 3896 ∅c0 4278 𝒫 cpw 4545 dom cdm 5611 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 fBascfbas 21274 filGencfg 21275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-fg 21284 |
| This theorem is referenced by: elfg 23781 restmetu 24480 neifg 36405 |
| Copyright terms: Public domain | W3C validator |