| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgval | Structured version Visualization version GIF version | ||
| Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgval | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg 21329 | . . 3 ⊢ filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})) |
| 3 | pweq 4596 | . . . . 5 ⊢ (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋) |
| 5 | ineq1 4195 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
| 6 | 5 | neeq1d 2990 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
| 8 | 4, 7 | rabeqbidv 3439 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋 ∧ 𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| 10 | fveq2 6887 | . . 3 ⊢ (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋)) | |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋)) |
| 12 | elfvex 6925 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V) | |
| 13 | id 22 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 14 | elfvdm 6924 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 15 | pwexg 5360 | . . 3 ⊢ (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V) | |
| 16 | rabexg 5319 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) | |
| 17 | 14, 15, 16 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) |
| 18 | 2, 9, 11, 12, 13, 17 | ovmpodx 7567 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {crab 3420 Vcvv 3464 ∩ cin 3932 ∅c0 4315 𝒫 cpw 4582 dom cdm 5667 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 fBascfbas 21319 filGencfg 21320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-fg 21329 |
| This theorem is referenced by: elfg 23844 restmetu 24546 neifg 36313 |
| Copyright terms: Public domain | W3C validator |