| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgval | Structured version Visualization version GIF version | ||
| Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgval | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg 21268 | . . 3 ⊢ filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})) |
| 3 | pweq 4585 | . . . . 5 ⊢ (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋) |
| 5 | ineq1 4184 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
| 6 | 5 | neeq1d 2986 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
| 8 | 4, 7 | rabeqbidv 3430 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋 ∧ 𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| 10 | fveq2 6865 | . . 3 ⊢ (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋)) | |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋)) |
| 12 | elfvex 6903 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V) | |
| 13 | id 22 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 14 | elfvdm 6902 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 15 | pwexg 5341 | . . 3 ⊢ (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V) | |
| 16 | rabexg 5300 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) | |
| 17 | 14, 15, 16 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) |
| 18 | 2, 9, 11, 12, 13, 17 | ovmpodx 7547 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 {crab 3411 Vcvv 3455 ∩ cin 3921 ∅c0 4304 𝒫 cpw 4571 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 fBascfbas 21258 filGencfg 21259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-fg 21268 |
| This theorem is referenced by: elfg 23764 restmetu 24464 neifg 36356 |
| Copyright terms: Public domain | W3C validator |