MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgval Structured version   Visualization version   GIF version

Theorem fgval 23021
Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgval (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fgval
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fg 20595 . . 3 filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})
21a1i 11 . 2 (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}))
3 pweq 4549 . . . . 5 (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋)
43adantr 481 . . . 4 ((𝑣 = 𝑋𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋)
5 ineq1 4139 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥))
65neeq1d 3003 . . . . 5 (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
76adantl 482 . . . 4 ((𝑣 = 𝑋𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
84, 7rabeqbidv 3420 . . 3 ((𝑣 = 𝑋𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
98adantl 482 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
10 fveq2 6774 . . 3 (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋))
1110adantl 482 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋))
12 elfvex 6807 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
13 id 22 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
14 elfvdm 6806 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
15 pwexg 5301 . . 3 (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V)
16 rabexg 5255 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V)
1714, 15, 163syl 18 . 2 (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V)
182, 9, 11, 12, 13, 17ovmpodx 7424 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cin 3886  c0 4256  𝒫 cpw 4533  dom cdm 5589  cfv 6433  (class class class)co 7275  cmpo 7277  fBascfbas 20585  filGencfg 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fg 20595
This theorem is referenced by:  elfg  23022  restmetu  23726  neifg  34560
  Copyright terms: Public domain W3C validator