![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fgval | Structured version Visualization version GIF version |
Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fgval | ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fg 21380 | . . 3 ⊢ filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})) |
3 | pweq 4619 | . . . . 5 ⊢ (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋) |
5 | ineq1 4221 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
6 | 5 | neeq1d 2998 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
8 | 4, 7 | rabeqbidv 3452 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
9 | 8 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋 ∧ 𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
10 | fveq2 6907 | . . 3 ⊢ (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋)) | |
11 | 10 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋)) |
12 | elfvex 6945 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V) | |
13 | id 22 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
14 | elfvdm 6944 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
15 | pwexg 5384 | . . 3 ⊢ (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V) | |
16 | rabexg 5343 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) | |
17 | 14, 15, 16 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V) |
18 | 2, 9, 11, 12, 13, 17 | ovmpodx 7584 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Vcvv 3478 ∩ cin 3962 ∅c0 4339 𝒫 cpw 4605 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 fBascfbas 21370 filGencfg 21371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-fg 21380 |
This theorem is referenced by: elfg 23895 restmetu 24599 neifg 36354 |
Copyright terms: Public domain | W3C validator |