Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpoexxg2 | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg 7916. (Contributed by AV, 30-Mar-2019.) |
Ref | Expression |
---|---|
mpoexxg2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg2 | ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexxg2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 7398 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx2 45672 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
4 | snex 5354 | . . . . . 6 ⊢ {𝑦} ∈ V | |
5 | xpexg 7600 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ {𝑦} ∈ V) → (𝐴 × {𝑦}) ∈ V) | |
6 | 4, 5 | mpan2 688 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (𝐴 × {𝑦}) ∈ V) |
7 | 6 | ralimi 3087 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
8 | iunexg 7806 | . . . 4 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
10 | ssexg 5247 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∧ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → dom 𝐹 ∈ V) | |
11 | 3, 9, 10 | sylancr 587 | . 2 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → dom 𝐹 ∈ V) |
12 | funex 7095 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
13 | 2, 11, 12 | sylancr 587 | 1 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 {csn 4561 ∪ ciun 4924 × cxp 5587 dom cdm 5589 Fun wfun 6427 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: lincop 45749 |
Copyright terms: Public domain | W3C validator |