| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpoexxg2 | Structured version Visualization version GIF version | ||
| Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg 8033. (Contributed by AV, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| mpoexxg2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpoexxg2 | ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoexxg2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpofun 7493 | . 2 ⊢ Fun 𝐹 |
| 3 | 1 | dmmpossx2 48298 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
| 4 | vsnex 5384 | . . . . . 6 ⊢ {𝑦} ∈ V | |
| 5 | xpexg 7706 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ {𝑦} ∈ V) → (𝐴 × {𝑦}) ∈ V) | |
| 6 | 4, 5 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (𝐴 × {𝑦}) ∈ V) |
| 7 | 6 | ralimi 3066 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
| 8 | iunexg 7921 | . . . 4 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
| 9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
| 10 | ssexg 5273 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∧ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → dom 𝐹 ∈ V) | |
| 11 | 3, 9, 10 | sylancr 587 | . 2 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → dom 𝐹 ∈ V) |
| 12 | funex 7175 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
| 13 | 2, 11, 12 | sylancr 587 | 1 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 {csn 4585 ∪ ciun 4951 × cxp 5629 dom cdm 5631 Fun wfun 6493 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: lincop 48370 |
| Copyright terms: Public domain | W3C validator |