Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpoexxg2 Structured version   Visualization version   GIF version

Theorem mpoexxg2 47270
Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg 8058. (Contributed by AV, 30-Mar-2019.)
Hypothesis
Ref Expression
mpoexxg2.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexxg2 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexxg2
StepHypRef Expression
1 mpoexxg2.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7527 . 2 Fun 𝐹
31dmmpossx2 47269 . . 3 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
4 vsnex 5422 . . . . . 6 {𝑦} ∈ V
5 xpexg 7733 . . . . . 6 ((𝐴𝑆 ∧ {𝑦} ∈ V) → (𝐴 × {𝑦}) ∈ V)
64, 5mpan2 688 . . . . 5 (𝐴𝑆 → (𝐴 × {𝑦}) ∈ V)
76ralimi 3077 . . . 4 (∀𝑦𝐵 𝐴𝑆 → ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
8 iunexg 7946 . . . 4 ((𝐵𝑅 ∧ ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
97, 8sylan2 592 . . 3 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
10 ssexg 5316 . . 3 ((dom 𝐹 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → dom 𝐹 ∈ V)
113, 9, 10sylancr 586 . 2 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → dom 𝐹 ∈ V)
12 funex 7215 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
132, 11, 12sylancr 586 1 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468  wss 3943  {csn 4623   ciun 4990   × cxp 5667  dom cdm 5669  Fun wfun 6530  cmpo 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972
This theorem is referenced by:  lincop  47345
  Copyright terms: Public domain W3C validator