![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpoexxg2 | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg 8058. (Contributed by AV, 30-Mar-2019.) |
Ref | Expression |
---|---|
mpoexxg2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg2 | ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexxg2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 7527 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx2 47269 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
4 | vsnex 5422 | . . . . . 6 ⊢ {𝑦} ∈ V | |
5 | xpexg 7733 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ {𝑦} ∈ V) → (𝐴 × {𝑦}) ∈ V) | |
6 | 4, 5 | mpan2 688 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (𝐴 × {𝑦}) ∈ V) |
7 | 6 | ralimi 3077 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
8 | iunexg 7946 | . . . 4 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
9 | 7, 8 | sylan2 592 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
10 | ssexg 5316 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∧ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → dom 𝐹 ∈ V) | |
11 | 3, 9, 10 | sylancr 586 | . 2 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → dom 𝐹 ∈ V) |
12 | funex 7215 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
13 | 2, 11, 12 | sylancr 586 | 1 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ⊆ wss 3943 {csn 4623 ∪ ciun 4990 × cxp 5667 dom cdm 5669 Fun wfun 6530 ∈ cmpo 7406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: lincop 47345 |
Copyright terms: Public domain | W3C validator |