Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpoexxg2 Structured version   Visualization version   GIF version

Theorem mpoexxg2 48293
Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg 8079. (Contributed by AV, 30-Mar-2019.)
Hypothesis
Ref Expression
mpoexxg2.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexxg2 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexxg2
StepHypRef Expression
1 mpoexxg2.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7536 . 2 Fun 𝐹
31dmmpossx2 48292 . . 3 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
4 vsnex 5409 . . . . . 6 {𝑦} ∈ V
5 xpexg 7749 . . . . . 6 ((𝐴𝑆 ∧ {𝑦} ∈ V) → (𝐴 × {𝑦}) ∈ V)
64, 5mpan2 691 . . . . 5 (𝐴𝑆 → (𝐴 × {𝑦}) ∈ V)
76ralimi 3074 . . . 4 (∀𝑦𝐵 𝐴𝑆 → ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
8 iunexg 7967 . . . 4 ((𝐵𝑅 ∧ ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
97, 8sylan2 593 . . 3 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
10 ssexg 5298 . . 3 ((dom 𝐹 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → dom 𝐹 ∈ V)
113, 9, 10sylancr 587 . 2 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → dom 𝐹 ∈ V)
12 funex 7216 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
132, 11, 12sylancr 587 1 ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  {csn 4606   ciun 4972   × cxp 5657  dom cdm 5659  Fun wfun 6530  cmpo 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994
This theorem is referenced by:  lincop  48364
  Copyright terms: Public domain W3C validator