Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpoexxg2 | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg 7984. (Contributed by AV, 30-Mar-2019.) |
Ref | Expression |
---|---|
mpoexxg2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg2 | ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexxg2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 7460 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx2 46023 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
4 | vsnex 5374 | . . . . . 6 ⊢ {𝑦} ∈ V | |
5 | xpexg 7662 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ {𝑦} ∈ V) → (𝐴 × {𝑦}) ∈ V) | |
6 | 4, 5 | mpan2 688 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (𝐴 × {𝑦}) ∈ V) |
7 | 6 | ralimi 3082 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
8 | iunexg 7874 | . . . 4 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
10 | ssexg 5267 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∧ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → dom 𝐹 ∈ V) | |
11 | 3, 9, 10 | sylancr 587 | . 2 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → dom 𝐹 ∈ V) |
12 | funex 7151 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
13 | 2, 11, 12 | sylancr 587 | 1 ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 ⊆ wss 3898 {csn 4573 ∪ ciun 4941 × cxp 5618 dom cdm 5620 Fun wfun 6473 ∈ cmpo 7339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 |
This theorem is referenced by: lincop 46100 |
Copyright terms: Public domain | W3C validator |