| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxnul | Structured version Visualization version GIF version | ||
| Description: The Null Set Axiom ax-nul 5273 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxnul | ⊢ ∃𝑥∀𝑦 ¬ 𝑦𝑅𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6885 | . 2 ⊢ (◡𝐹‘∅) ∈ V | |
| 2 | breq2 5120 | . . . 4 ⊢ (𝑥 = (◡𝐹‘∅) → (𝑦𝑅𝑥 ↔ 𝑦𝑅(◡𝐹‘∅))) | |
| 3 | 2 | notbid 318 | . . 3 ⊢ (𝑥 = (◡𝐹‘∅) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅(◡𝐹‘∅))) |
| 4 | 3 | albidv 1919 | . 2 ⊢ (𝑥 = (◡𝐹‘∅) → (∀𝑦 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ¬ 𝑦𝑅(◡𝐹‘∅))) |
| 5 | noel 4311 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 7 | permmodel.2 | . . . . 5 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 8 | vex 3461 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 0ex 5274 | . . . . 5 ⊢ ∅ ∈ V | |
| 10 | 6, 7, 8, 9 | brpermmodelcnv 44956 | . . . 4 ⊢ (𝑦𝑅(◡𝐹‘∅) ↔ 𝑦 ∈ ∅) |
| 11 | 5, 10 | mtbir 323 | . . 3 ⊢ ¬ 𝑦𝑅(◡𝐹‘∅) |
| 12 | 11 | ax-gen 1794 | . 2 ⊢ ∀𝑦 ¬ 𝑦𝑅(◡𝐹‘∅) |
| 13 | 1, 4, 12 | ceqsexv2d 3510 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦𝑅𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 class class class wbr 5116 E cep 5549 ◡ccnv 5650 ∘ ccom 5655 –1-1-onto→wf1o 6526 ‘cfv 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-eprel 5550 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |