| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxnul | Structured version Visualization version GIF version | ||
| Description: The Null Set Axiom ax-nul 5248 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxnul | ⊢ ∃𝑥∀𝑦 ¬ 𝑦𝑅𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6844 | . 2 ⊢ (◡𝐹‘∅) ∈ V | |
| 2 | breq2 5099 | . . . 4 ⊢ (𝑥 = (◡𝐹‘∅) → (𝑦𝑅𝑥 ↔ 𝑦𝑅(◡𝐹‘∅))) | |
| 3 | 2 | notbid 318 | . . 3 ⊢ (𝑥 = (◡𝐹‘∅) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅(◡𝐹‘∅))) |
| 4 | 3 | albidv 1921 | . 2 ⊢ (𝑥 = (◡𝐹‘∅) → (∀𝑦 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ¬ 𝑦𝑅(◡𝐹‘∅))) |
| 5 | noel 4287 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 7 | permmodel.2 | . . . . 5 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 8 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 10 | 6, 7, 8, 9 | brpermmodelcnv 45161 | . . . 4 ⊢ (𝑦𝑅(◡𝐹‘∅) ↔ 𝑦 ∈ ∅) |
| 11 | 5, 10 | mtbir 323 | . . 3 ⊢ ¬ 𝑦𝑅(◡𝐹‘∅) |
| 12 | 11 | ax-gen 1796 | . 2 ⊢ ∀𝑦 ¬ 𝑦𝑅(◡𝐹‘∅) |
| 13 | 1, 4, 12 | ceqsexv2d 3488 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦𝑅𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 class class class wbr 5095 E cep 5520 ◡ccnv 5620 ∘ ccom 5625 –1-1-onto→wf1o 6488 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-eprel 5521 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |