Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxnul Structured version   Visualization version   GIF version

Theorem permaxnul 44960
Description: The Null Set Axiom ax-nul 5273 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxnul 𝑥𝑦 ¬ 𝑦𝑅𝑥
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑅
Allowed substitution hint:   𝑅(𝑦)

Proof of Theorem permaxnul
StepHypRef Expression
1 fvex 6885 . 2 (𝐹‘∅) ∈ V
2 breq2 5120 . . . 4 (𝑥 = (𝐹‘∅) → (𝑦𝑅𝑥𝑦𝑅(𝐹‘∅)))
32notbid 318 . . 3 (𝑥 = (𝐹‘∅) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅(𝐹‘∅)))
43albidv 1919 . 2 (𝑥 = (𝐹‘∅) → (∀𝑦 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ¬ 𝑦𝑅(𝐹‘∅)))
5 noel 4311 . . . 4 ¬ 𝑦 ∈ ∅
6 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
7 permmodel.2 . . . . 5 𝑅 = (𝐹 ∘ E )
8 vex 3461 . . . . 5 𝑦 ∈ V
9 0ex 5274 . . . . 5 ∅ ∈ V
106, 7, 8, 9brpermmodelcnv 44956 . . . 4 (𝑦𝑅(𝐹‘∅) ↔ 𝑦 ∈ ∅)
115, 10mtbir 323 . . 3 ¬ 𝑦𝑅(𝐹‘∅)
1211ax-gen 1794 . 2 𝑦 ¬ 𝑦𝑅(𝐹‘∅)
131, 4, 12ceqsexv2d 3510 1 𝑥𝑦 ¬ 𝑦𝑅𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537   = wceq 1539  wex 1778  wcel 2107  Vcvv 3457  c0 4306   class class class wbr 5116   E cep 5549  ccnv 5650  ccom 5655  1-1-ontowf1o 6526  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator