Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxsep Structured version   Visualization version   GIF version

Theorem permaxsep 45164
Description: The Axiom of Separation ax-sep 5238 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxsep 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧   𝑥,𝐹,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑅(𝑥,𝑧)   𝐹(𝑧)

Proof of Theorem permaxsep
StepHypRef Expression
1 fvex 6844 . 2 (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ∈ V
2 nfcv 2895 . . . . 5 𝑥𝐹
3 nfrab1 3416 . . . . 5 𝑥{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}
42, 3nffv 6841 . . . 4 𝑥(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
54nfeq2 2913 . . 3 𝑥 𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
6 breq2 5099 . . . 4 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (𝑥𝑅𝑦𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})))
76bibi1d 343 . . 3 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → ((𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
85, 7albid 2227 . 2 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ ∀𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
9 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
10 permmodel.2 . . . . 5 𝑅 = (𝐹 ∘ E )
11 vex 3441 . . . . 5 𝑥 ∈ V
12 fvex 6844 . . . . . 6 (𝐹𝑧) ∈ V
1312rabex 5281 . . . . 5 {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ∈ V
149, 10, 11, 13brpermmodelcnv 45161 . . . 4 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ 𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
15 rabid 3417 . . . . 5 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥 ∈ (𝐹𝑧) ∧ 𝜑))
16 vex 3441 . . . . . . 7 𝑧 ∈ V
179, 10, 11, 16brpermmodel 45160 . . . . . 6 (𝑥𝑅𝑧𝑥 ∈ (𝐹𝑧))
1817bicomi 224 . . . . 5 (𝑥 ∈ (𝐹𝑧) ↔ 𝑥𝑅𝑧)
1915, 18bianbi 627 . . . 4 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥𝑅𝑧𝜑))
2014, 19bitri 275 . . 3 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
2120ax-gen 1796 . 2 𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
221, 8, 21ceqsexv2d 3488 1 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2113  {crab 3396  Vcvv 3437   class class class wbr 5095   E cep 5520  ccnv 5620  ccom 5625  1-1-ontowf1o 6488  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator