| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxsep | Structured version Visualization version GIF version | ||
| Description: The Axiom of Separation
ax-sep 5235 holds in permutation models. Part of
Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxsep | ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . 2 ⊢ (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ∈ V | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 | |
| 3 | nfrab1 3415 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} | |
| 4 | 2, 3 | nffv 6832 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 5 | 4 | nfeq2 2909 | . . 3 ⊢ Ⅎ𝑥 𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 6 | breq2 5096 | . . . 4 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → (𝑥𝑅𝑦 ↔ 𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}))) | |
| 7 | 6 | bibi1d 343 | . . 3 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → ((𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) ↔ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)))) |
| 8 | 5, 7 | albid 2223 | . 2 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → (∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) ↔ ∀𝑥(𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)))) |
| 9 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 10 | permmodel.2 | . . . . 5 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 11 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | fvex 6835 | . . . . . 6 ⊢ (𝐹‘𝑧) ∈ V | |
| 13 | 12 | rabex 5278 | . . . . 5 ⊢ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ∈ V |
| 14 | 9, 10, 11, 13 | brpermmodelcnv 44978 | . . . 4 ⊢ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ 𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 15 | rabid 3416 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ↔ (𝑥 ∈ (𝐹‘𝑧) ∧ 𝜑)) | |
| 16 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 17 | 9, 10, 11, 16 | brpermmodel 44977 | . . . . . 6 ⊢ (𝑥𝑅𝑧 ↔ 𝑥 ∈ (𝐹‘𝑧)) |
| 18 | 17 | bicomi 224 | . . . . 5 ⊢ (𝑥 ∈ (𝐹‘𝑧) ↔ 𝑥𝑅𝑧) |
| 19 | 15, 18 | bianbi 627 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 20 | 14, 19 | bitri 275 | . . 3 ⊢ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 21 | 20 | ax-gen 1795 | . 2 ⊢ ∀𝑥(𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 22 | 1, 8, 21 | ceqsexv2d 3488 | 1 ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {crab 3394 Vcvv 3436 class class class wbr 5092 E cep 5518 ◡ccnv 5618 ∘ ccom 5623 –1-1-onto→wf1o 6481 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |