Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxsep Structured version   Visualization version   GIF version

Theorem permaxsep 44981
Description: The Axiom of Separation ax-sep 5235 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxsep 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧   𝑥,𝐹,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑅(𝑥,𝑧)   𝐹(𝑧)

Proof of Theorem permaxsep
StepHypRef Expression
1 fvex 6835 . 2 (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ∈ V
2 nfcv 2891 . . . . 5 𝑥𝐹
3 nfrab1 3415 . . . . 5 𝑥{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}
42, 3nffv 6832 . . . 4 𝑥(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
54nfeq2 2909 . . 3 𝑥 𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
6 breq2 5096 . . . 4 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (𝑥𝑅𝑦𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})))
76bibi1d 343 . . 3 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → ((𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
85, 7albid 2223 . 2 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ ∀𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
9 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
10 permmodel.2 . . . . 5 𝑅 = (𝐹 ∘ E )
11 vex 3440 . . . . 5 𝑥 ∈ V
12 fvex 6835 . . . . . 6 (𝐹𝑧) ∈ V
1312rabex 5278 . . . . 5 {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ∈ V
149, 10, 11, 13brpermmodelcnv 44978 . . . 4 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ 𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
15 rabid 3416 . . . . 5 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥 ∈ (𝐹𝑧) ∧ 𝜑))
16 vex 3440 . . . . . . 7 𝑧 ∈ V
179, 10, 11, 16brpermmodel 44977 . . . . . 6 (𝑥𝑅𝑧𝑥 ∈ (𝐹𝑧))
1817bicomi 224 . . . . 5 (𝑥 ∈ (𝐹𝑧) ↔ 𝑥𝑅𝑧)
1915, 18bianbi 627 . . . 4 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥𝑅𝑧𝜑))
2014, 19bitri 275 . . 3 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
2120ax-gen 1795 . 2 𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
221, 8, 21ceqsexv2d 3488 1 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {crab 3394  Vcvv 3436   class class class wbr 5092   E cep 5518  ccnv 5618  ccom 5623  1-1-ontowf1o 6481  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator