Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxsep Structured version   Visualization version   GIF version

Theorem permaxsep 45040
Description: The Axiom of Separation ax-sep 5229 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxsep 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧   𝑥,𝐹,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑅(𝑥,𝑧)   𝐹(𝑧)

Proof of Theorem permaxsep
StepHypRef Expression
1 fvex 6830 . 2 (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ∈ V
2 nfcv 2894 . . . . 5 𝑥𝐹
3 nfrab1 3415 . . . . 5 𝑥{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}
42, 3nffv 6827 . . . 4 𝑥(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
54nfeq2 2912 . . 3 𝑥 𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
6 breq2 5090 . . . 4 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (𝑥𝑅𝑦𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})))
76bibi1d 343 . . 3 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → ((𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
85, 7albid 2225 . 2 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ ∀𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
9 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
10 permmodel.2 . . . . 5 𝑅 = (𝐹 ∘ E )
11 vex 3440 . . . . 5 𝑥 ∈ V
12 fvex 6830 . . . . . 6 (𝐹𝑧) ∈ V
1312rabex 5272 . . . . 5 {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ∈ V
149, 10, 11, 13brpermmodelcnv 45037 . . . 4 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ 𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
15 rabid 3416 . . . . 5 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥 ∈ (𝐹𝑧) ∧ 𝜑))
16 vex 3440 . . . . . . 7 𝑧 ∈ V
179, 10, 11, 16brpermmodel 45036 . . . . . 6 (𝑥𝑅𝑧𝑥 ∈ (𝐹𝑧))
1817bicomi 224 . . . . 5 (𝑥 ∈ (𝐹𝑧) ↔ 𝑥𝑅𝑧)
1915, 18bianbi 627 . . . 4 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥𝑅𝑧𝜑))
2014, 19bitri 275 . . 3 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
2120ax-gen 1796 . 2 𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
221, 8, 21ceqsexv2d 3487 1 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5086   E cep 5510  ccnv 5610  ccom 5615  1-1-ontowf1o 6475  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator