| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxsep | Structured version Visualization version GIF version | ||
| Description: The Axiom of Separation
ax-sep 5263 holds in permutation models. Part of
Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxsep | ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6885 | . 2 ⊢ (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ∈ V | |
| 2 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 | |
| 3 | nfrab1 3434 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} | |
| 4 | 2, 3 | nffv 6882 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 5 | 4 | nfeq2 2915 | . . 3 ⊢ Ⅎ𝑥 𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 6 | breq2 5120 | . . . 4 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → (𝑥𝑅𝑦 ↔ 𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}))) | |
| 7 | 6 | bibi1d 343 | . . 3 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → ((𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) ↔ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)))) |
| 8 | 5, 7 | albid 2221 | . 2 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → (∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) ↔ ∀𝑥(𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)))) |
| 9 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 10 | permmodel.2 | . . . . 5 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 11 | vex 3461 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | fvex 6885 | . . . . . 6 ⊢ (𝐹‘𝑧) ∈ V | |
| 13 | 12 | rabex 5306 | . . . . 5 ⊢ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ∈ V |
| 14 | 9, 10, 11, 13 | brpermmodelcnv 44956 | . . . 4 ⊢ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ 𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 15 | rabid 3435 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ↔ (𝑥 ∈ (𝐹‘𝑧) ∧ 𝜑)) | |
| 16 | vex 3461 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 17 | 9, 10, 11, 16 | brpermmodel 44955 | . . . . . 6 ⊢ (𝑥𝑅𝑧 ↔ 𝑥 ∈ (𝐹‘𝑧)) |
| 18 | 17 | bicomi 224 | . . . . 5 ⊢ (𝑥 ∈ (𝐹‘𝑧) ↔ 𝑥𝑅𝑧) |
| 19 | 15, 18 | bianbi 627 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 20 | 14, 19 | bitri 275 | . . 3 ⊢ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 21 | 20 | ax-gen 1794 | . 2 ⊢ ∀𝑥(𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 22 | 1, 8, 21 | ceqsexv2d 3510 | 1 ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {crab 3413 Vcvv 3457 class class class wbr 5116 E cep 5549 ◡ccnv 5650 ∘ ccom 5655 –1-1-onto→wf1o 6526 ‘cfv 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-eprel 5550 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |