| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxsep | Structured version Visualization version GIF version | ||
| Description: The Axiom of Separation
ax-sep 5229 holds in permutation models. Part of
Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxsep | ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6830 | . 2 ⊢ (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ∈ V | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 | |
| 3 | nfrab1 3415 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} | |
| 4 | 2, 3 | nffv 6827 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 5 | 4 | nfeq2 2912 | . . 3 ⊢ Ⅎ𝑥 𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 6 | breq2 5090 | . . . 4 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → (𝑥𝑅𝑦 ↔ 𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}))) | |
| 7 | 6 | bibi1d 343 | . . 3 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → ((𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) ↔ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)))) |
| 8 | 5, 7 | albid 2225 | . 2 ⊢ (𝑦 = (◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) → (∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) ↔ ∀𝑥(𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)))) |
| 9 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 10 | permmodel.2 | . . . . 5 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 11 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | fvex 6830 | . . . . . 6 ⊢ (𝐹‘𝑧) ∈ V | |
| 13 | 12 | rabex 5272 | . . . . 5 ⊢ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ∈ V |
| 14 | 9, 10, 11, 13 | brpermmodelcnv 45037 | . . . 4 ⊢ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ 𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) |
| 15 | rabid 3416 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ↔ (𝑥 ∈ (𝐹‘𝑧) ∧ 𝜑)) | |
| 16 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 17 | 9, 10, 11, 16 | brpermmodel 45036 | . . . . . 6 ⊢ (𝑥𝑅𝑧 ↔ 𝑥 ∈ (𝐹‘𝑧)) |
| 18 | 17 | bicomi 224 | . . . . 5 ⊢ (𝑥 ∈ (𝐹‘𝑧) ↔ 𝑥𝑅𝑧) |
| 19 | 15, 18 | bianbi 627 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑} ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 20 | 14, 19 | bitri 275 | . . 3 ⊢ (𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 21 | 20 | ax-gen 1796 | . 2 ⊢ ∀𝑥(𝑥𝑅(◡𝐹‘{𝑥 ∈ (𝐹‘𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| 22 | 1, 8, 21 | ceqsexv2d 3487 | 1 ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {crab 3395 Vcvv 3436 class class class wbr 5086 E cep 5510 ◡ccnv 5610 ∘ ccom 5615 –1-1-onto→wf1o 6475 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |