Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxsep Structured version   Visualization version   GIF version

Theorem permaxsep 44990
Description: The Axiom of Separation ax-sep 5253 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxsep 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧   𝑥,𝐹,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑅(𝑥,𝑧)   𝐹(𝑧)

Proof of Theorem permaxsep
StepHypRef Expression
1 fvex 6873 . 2 (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ∈ V
2 nfcv 2892 . . . . 5 𝑥𝐹
3 nfrab1 3429 . . . . 5 𝑥{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}
42, 3nffv 6870 . . . 4 𝑥(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
54nfeq2 2910 . . 3 𝑥 𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
6 breq2 5113 . . . 4 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (𝑥𝑅𝑦𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑})))
76bibi1d 343 . . 3 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → ((𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
85, 7albid 2223 . 2 (𝑦 = (𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) → (∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑)) ↔ ∀𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))))
9 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
10 permmodel.2 . . . . 5 𝑅 = (𝐹 ∘ E )
11 vex 3454 . . . . 5 𝑥 ∈ V
12 fvex 6873 . . . . . 6 (𝐹𝑧) ∈ V
1312rabex 5296 . . . . 5 {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ∈ V
149, 10, 11, 13brpermmodelcnv 44987 . . . 4 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ 𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑})
15 rabid 3430 . . . . 5 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥 ∈ (𝐹𝑧) ∧ 𝜑))
16 vex 3454 . . . . . . 7 𝑧 ∈ V
179, 10, 11, 16brpermmodel 44986 . . . . . 6 (𝑥𝑅𝑧𝑥 ∈ (𝐹𝑧))
1817bicomi 224 . . . . 5 (𝑥 ∈ (𝐹𝑧) ↔ 𝑥𝑅𝑧)
1915, 18bianbi 627 . . . 4 (𝑥 ∈ {𝑥 ∈ (𝐹𝑧) ∣ 𝜑} ↔ (𝑥𝑅𝑧𝜑))
2014, 19bitri 275 . . 3 (𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
2120ax-gen 1795 . 2 𝑥(𝑥𝑅(𝐹‘{𝑥 ∈ (𝐹𝑧) ∣ 𝜑}) ↔ (𝑥𝑅𝑧𝜑))
221, 8, 21ceqsexv2d 3502 1 𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {crab 3408  Vcvv 3450   class class class wbr 5109   E cep 5539  ccnv 5639  ccom 5644  1-1-ontowf1o 6512  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator