Proof of Theorem permaxpow
| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6885 |
. 2
⊢ (◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥))) ∈ V |
| 2 | | breq2 5120 |
. . . 4
⊢ (𝑦 = (◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥))) → (𝑧𝑅𝑦 ↔ 𝑧𝑅(◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥))))) |
| 3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑦 = (◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥))) → ((∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ (∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥)))))) |
| 4 | 3 | albidv 1919 |
. 2
⊢ (𝑦 = (◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥))) → (∀𝑧(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ ∀𝑧(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥)))))) |
| 5 | | permmodel.1 |
. . . . . 6
⊢ 𝐹:V–1-1-onto→V |
| 6 | | permmodel.2 |
. . . . . 6
⊢ 𝑅 = (◡𝐹 ∘ E ) |
| 7 | | vex 3461 |
. . . . . 6
⊢ 𝑧 ∈ V |
| 8 | | dff1o3 6820 |
. . . . . . . . 9
⊢ (𝐹:V–1-1-onto→V
↔ (𝐹:V–onto→V ∧ Fun ◡𝐹)) |
| 9 | 5, 8 | mpbi 230 |
. . . . . . . 8
⊢ (𝐹:V–onto→V ∧ Fun ◡𝐹) |
| 10 | 9 | simpri 485 |
. . . . . . 7
⊢ Fun ◡𝐹 |
| 11 | | fvex 6885 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ∈ V |
| 12 | 11 | pwex 5347 |
. . . . . . . 8
⊢ 𝒫
(𝐹‘𝑥) ∈ V |
| 13 | 12 | funimaex 6621 |
. . . . . . 7
⊢ (Fun
◡𝐹 → (◡𝐹 “ 𝒫 (𝐹‘𝑥)) ∈ V) |
| 14 | 10, 13 | ax-mp 5 |
. . . . . 6
⊢ (◡𝐹 “ 𝒫 (𝐹‘𝑥)) ∈ V |
| 15 | 5, 6, 7, 14 | brpermmodelcnv 44956 |
. . . . 5
⊢ (𝑧𝑅(◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥))) ↔ 𝑧 ∈ (◡𝐹 “ 𝒫 (𝐹‘𝑥))) |
| 16 | | f1ofn 6815 |
. . . . . . . 8
⊢ (𝐹:V–1-1-onto→V
→ 𝐹 Fn
V) |
| 17 | 5, 16 | ax-mp 5 |
. . . . . . 7
⊢ 𝐹 Fn V |
| 18 | | elpreima 7044 |
. . . . . . 7
⊢ (𝐹 Fn V → (𝑧 ∈ (◡𝐹 “ 𝒫 (𝐹‘𝑥)) ↔ (𝑧 ∈ V ∧ (𝐹‘𝑧) ∈ 𝒫 (𝐹‘𝑥)))) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . 6
⊢ (𝑧 ∈ (◡𝐹 “ 𝒫 (𝐹‘𝑥)) ↔ (𝑧 ∈ V ∧ (𝐹‘𝑧) ∈ 𝒫 (𝐹‘𝑥))) |
| 20 | 7, 19 | mpbiran 709 |
. . . . 5
⊢ (𝑧 ∈ (◡𝐹 “ 𝒫 (𝐹‘𝑥)) ↔ (𝐹‘𝑧) ∈ 𝒫 (𝐹‘𝑥)) |
| 21 | 15, 20 | bitri 275 |
. . . 4
⊢ (𝑧𝑅(◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥))) ↔ (𝐹‘𝑧) ∈ 𝒫 (𝐹‘𝑥)) |
| 22 | | df-ss 3941 |
. . . . 5
⊢ ((𝐹‘𝑧) ⊆ (𝐹‘𝑥) ↔ ∀𝑤(𝑤 ∈ (𝐹‘𝑧) → 𝑤 ∈ (𝐹‘𝑥))) |
| 23 | | fvex 6885 |
. . . . . 6
⊢ (𝐹‘𝑧) ∈ V |
| 24 | 23 | elpw 4577 |
. . . . 5
⊢ ((𝐹‘𝑧) ∈ 𝒫 (𝐹‘𝑥) ↔ (𝐹‘𝑧) ⊆ (𝐹‘𝑥)) |
| 25 | | vex 3461 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
| 26 | 5, 6, 25, 7 | brpermmodel 44955 |
. . . . . . 7
⊢ (𝑤𝑅𝑧 ↔ 𝑤 ∈ (𝐹‘𝑧)) |
| 27 | | vex 3461 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 28 | 5, 6, 25, 27 | brpermmodel 44955 |
. . . . . . 7
⊢ (𝑤𝑅𝑥 ↔ 𝑤 ∈ (𝐹‘𝑥)) |
| 29 | 26, 28 | imbi12i 350 |
. . . . . 6
⊢ ((𝑤𝑅𝑧 → 𝑤𝑅𝑥) ↔ (𝑤 ∈ (𝐹‘𝑧) → 𝑤 ∈ (𝐹‘𝑥))) |
| 30 | 29 | albii 1818 |
. . . . 5
⊢
(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) ↔ ∀𝑤(𝑤 ∈ (𝐹‘𝑧) → 𝑤 ∈ (𝐹‘𝑥))) |
| 31 | 22, 24, 30 | 3bitr4i 303 |
. . . 4
⊢ ((𝐹‘𝑧) ∈ 𝒫 (𝐹‘𝑥) ↔ ∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥)) |
| 32 | 21, 31 | sylbbr 236 |
. . 3
⊢
(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥)))) |
| 33 | 32 | ax-gen 1794 |
. 2
⊢
∀𝑧(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘(◡𝐹 “ 𝒫 (𝐹‘𝑥)))) |
| 34 | 1, 4, 33 | ceqsexv2d 3510 |
1
⊢
∃𝑦∀𝑧(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅𝑦) |