Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxpow Structured version   Visualization version   GIF version

Theorem permaxpow 44992
Description: The Axiom of Power Sets ax-pow 5322 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxpow 𝑦𝑧(∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝑦,𝐹,𝑧,𝑤   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑤)   𝐹(𝑥)

Proof of Theorem permaxpow
StepHypRef Expression
1 fvex 6873 . 2 (𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))) ∈ V
2 breq2 5113 . . . 4 (𝑦 = (𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))) → (𝑧𝑅𝑦𝑧𝑅(𝐹‘(𝐹 “ 𝒫 (𝐹𝑥)))))
32imbi2d 340 . . 3 (𝑦 = (𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))) → ((∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ (∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅(𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))))))
43albidv 1920 . 2 (𝑦 = (𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))) → (∀𝑧(∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ ∀𝑧(∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅(𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))))))
5 permmodel.1 . . . . . 6 𝐹:V–1-1-onto→V
6 permmodel.2 . . . . . 6 𝑅 = (𝐹 ∘ E )
7 vex 3454 . . . . . 6 𝑧 ∈ V
8 dff1o3 6808 . . . . . . . . 9 (𝐹:V–1-1-onto→V ↔ (𝐹:V–onto→V ∧ Fun 𝐹))
95, 8mpbi 230 . . . . . . . 8 (𝐹:V–onto→V ∧ Fun 𝐹)
109simpri 485 . . . . . . 7 Fun 𝐹
11 fvex 6873 . . . . . . . . 9 (𝐹𝑥) ∈ V
1211pwex 5337 . . . . . . . 8 𝒫 (𝐹𝑥) ∈ V
1312funimaex 6607 . . . . . . 7 (Fun 𝐹 → (𝐹 “ 𝒫 (𝐹𝑥)) ∈ V)
1410, 13ax-mp 5 . . . . . 6 (𝐹 “ 𝒫 (𝐹𝑥)) ∈ V
155, 6, 7, 14brpermmodelcnv 44987 . . . . 5 (𝑧𝑅(𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))) ↔ 𝑧 ∈ (𝐹 “ 𝒫 (𝐹𝑥)))
16 f1ofn 6803 . . . . . . . 8 (𝐹:V–1-1-onto→V → 𝐹 Fn V)
175, 16ax-mp 5 . . . . . . 7 𝐹 Fn V
18 elpreima 7032 . . . . . . 7 (𝐹 Fn V → (𝑧 ∈ (𝐹 “ 𝒫 (𝐹𝑥)) ↔ (𝑧 ∈ V ∧ (𝐹𝑧) ∈ 𝒫 (𝐹𝑥))))
1917, 18ax-mp 5 . . . . . 6 (𝑧 ∈ (𝐹 “ 𝒫 (𝐹𝑥)) ↔ (𝑧 ∈ V ∧ (𝐹𝑧) ∈ 𝒫 (𝐹𝑥)))
207, 19mpbiran 709 . . . . 5 (𝑧 ∈ (𝐹 “ 𝒫 (𝐹𝑥)) ↔ (𝐹𝑧) ∈ 𝒫 (𝐹𝑥))
2115, 20bitri 275 . . . 4 (𝑧𝑅(𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))) ↔ (𝐹𝑧) ∈ 𝒫 (𝐹𝑥))
22 df-ss 3933 . . . . 5 ((𝐹𝑧) ⊆ (𝐹𝑥) ↔ ∀𝑤(𝑤 ∈ (𝐹𝑧) → 𝑤 ∈ (𝐹𝑥)))
23 fvex 6873 . . . . . 6 (𝐹𝑧) ∈ V
2423elpw 4569 . . . . 5 ((𝐹𝑧) ∈ 𝒫 (𝐹𝑥) ↔ (𝐹𝑧) ⊆ (𝐹𝑥))
25 vex 3454 . . . . . . . 8 𝑤 ∈ V
265, 6, 25, 7brpermmodel 44986 . . . . . . 7 (𝑤𝑅𝑧𝑤 ∈ (𝐹𝑧))
27 vex 3454 . . . . . . . 8 𝑥 ∈ V
285, 6, 25, 27brpermmodel 44986 . . . . . . 7 (𝑤𝑅𝑥𝑤 ∈ (𝐹𝑥))
2926, 28imbi12i 350 . . . . . 6 ((𝑤𝑅𝑧𝑤𝑅𝑥) ↔ (𝑤 ∈ (𝐹𝑧) → 𝑤 ∈ (𝐹𝑥)))
3029albii 1819 . . . . 5 (∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) ↔ ∀𝑤(𝑤 ∈ (𝐹𝑧) → 𝑤 ∈ (𝐹𝑥)))
3122, 24, 303bitr4i 303 . . . 4 ((𝐹𝑧) ∈ 𝒫 (𝐹𝑥) ↔ ∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥))
3221, 31sylbbr 236 . . 3 (∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅(𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))))
3332ax-gen 1795 . 2 𝑧(∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅(𝐹‘(𝐹 “ 𝒫 (𝐹𝑥))))
341, 4, 33ceqsexv2d 3502 1 𝑦𝑧(∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  wss 3916  𝒫 cpw 4565   class class class wbr 5109   E cep 5539  ccnv 5639  cima 5643  ccom 5644  Fun wfun 6507   Fn wfn 6508  ontowfo 6511  1-1-ontowf1o 6512  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator