MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lemOLD Structured version   Visualization version   GIF version

Theorem psrass1lemOLD 20707
Description: Obsolete version of psrass1lem 20710 as of 7-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiagOLD.i (𝜑𝐼𝑉)
gsumbagdiagOLD.f (𝜑𝐹𝐷)
gsumbagdiagOLD.b 𝐵 = (Base‘𝐺)
gsumbagdiagOLD.g (𝜑𝐺 ∈ CMnd)
gsumbagdiagOLD.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
psrass1lemOLD.y (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
Assertion
Ref Expression
psrass1lemOLD (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑛,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑛,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑓,𝐼,𝑛,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑛,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑛,𝑥,𝑦   𝑓,𝑋,𝑛,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑛)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑛)

Proof of Theorem psrass1lemOLD
Dummy variables 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 psrbagconf1o.s . . . 4 𝑆 = {𝑦𝐷𝑦r𝐹}
3 gsumbagdiagOLD.i . . . 4 (𝜑𝐼𝑉)
4 gsumbagdiagOLD.f . . . 4 (𝜑𝐹𝐷)
5 gsumbagdiagOLD.b . . . 4 𝐵 = (Base‘𝐺)
6 gsumbagdiagOLD.g . . . 4 (𝜑𝐺 ∈ CMnd)
71, 2, 3, 4gsumbagdiaglemOLD 20705 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
8 gsumbagdiagOLD.x . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
98anassrs 471 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑋𝐵)
109fmpttd 6875 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
113adantr 484 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → 𝐼𝑉)
122ssrab3 3988 . . . . . . . . . . . 12 𝑆𝐷
134adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → 𝐹𝐷)
14 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → 𝑗𝑆)
151, 2psrbagconclOLD 20702 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1611, 13, 14, 15syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1712, 16sseldi 3892 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝐷)
18 eqid 2758 . . . . . . . . . . . 12 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} = {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
191, 18psrbagconf1oOLD 20704 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
2011, 17, 19syl2anc 587 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
21 f1of 6606 . . . . . . . . . 10 ((𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)} → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
2220, 21syl 17 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
23 fco 6520 . . . . . . . . 9 (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ∧ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
2410, 22, 23syl2anc 587 . . . . . . . 8 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
2511adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐼𝑉)
2613adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹𝐷)
271psrbagfOLD 20686 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2825, 26, 27syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹:𝐼⟶ℕ0)
2928ffvelrnda 6847 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
3014adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝑆)
3112, 30sseldi 3892 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝐷)
321psrbagfOLD 20686 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑗𝐷) → 𝑗:𝐼⟶ℕ0)
3325, 31, 32syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗:𝐼⟶ℕ0)
3433ffvelrnda 6847 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
35 ssrab2 3986 . . . . . . . . . . . . . . . . 17 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ⊆ 𝐷
36 simpr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
3735, 36sseldi 3892 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚𝐷)
381psrbagfOLD 20686 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑚𝐷) → 𝑚:𝐼⟶ℕ0)
3925, 37, 38syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚:𝐼⟶ℕ0)
4039ffvelrnda 6847 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑚𝑧) ∈ ℕ0)
41 nn0cn 11949 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℂ)
42 nn0cn 11949 . . . . . . . . . . . . . . 15 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
43 nn0cn 11949 . . . . . . . . . . . . . . 15 ((𝑚𝑧) ∈ ℕ0 → (𝑚𝑧) ∈ ℂ)
44 sub32 10963 . . . . . . . . . . . . . . 15 (((𝐹𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ ∧ (𝑚𝑧) ∈ ℂ) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4541, 42, 43, 44syl3an 1157 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0 ∧ (𝑚𝑧) ∈ ℕ0) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4629, 34, 40, 45syl3anc 1368 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4746mpteq2dva 5130 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
48 ovexd 7190 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑗𝑧)) ∈ V)
4928feqmptd 6725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹 = (𝑧𝐼 ↦ (𝐹𝑧)))
5033feqmptd 6725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
5125, 29, 34, 49, 50offval2 7429 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑗𝑧))))
5239feqmptd 6725 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 = (𝑧𝐼 ↦ (𝑚𝑧)))
5325, 48, 40, 51, 52offval2 7429 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))))
54 ovexd 7190 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑚𝑧)) ∈ V)
5525, 29, 40, 49, 52offval2 7429 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑚) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑚𝑧))))
5625, 54, 34, 55, 50offval2 7429 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
5747, 53, 563eqtr4d 2803 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = ((𝐹f𝑚) ∘f𝑗))
5817adantr 484 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) ∈ 𝐷)
591, 18psrbagconclOLD 20702 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6025, 58, 36, 59syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6157, 60eqeltrrd 2853 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6257mpteq2dva 5130 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗)))
63 nfcv 2919 . . . . . . . . . . . 12 𝑛𝑋
64 nfcsb1v 3831 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝑋
65 csbeq1a 3821 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑋 = 𝑛 / 𝑘𝑋)
6663, 64, 65cbvmpt 5136 . . . . . . . . . . 11 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋)
6766a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋))
68 csbeq1 3810 . . . . . . . . . 10 (𝑛 = ((𝐹f𝑚) ∘f𝑗) → 𝑛 / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
6961, 62, 67, 68fmptco 6887 . . . . . . . . 9 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
7069feq1d 6487 . . . . . . . 8 ((𝜑𝑗𝑆) → (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵))
7124, 70mpbid 235 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
7271fvmptelrn 6873 . . . . . 6 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
7372anasss 470 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
747, 73syldan 594 . . . 4 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
751, 2, 3, 4, 5, 6, 74gsumbagdiagOLD 20706 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
76 eqid 2758 . . . 4 (0g𝐺) = (0g𝐺)
771psrbaglefiOLD 20700 . . . . . 6 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
783, 4, 77syl2anc 587 . . . . 5 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
792, 78eqeltrid 2856 . . . 4 (𝜑𝑆 ∈ Fin)
803adantr 484 . . . . 5 ((𝜑𝑚𝑆) → 𝐼𝑉)
814adantr 484 . . . . . . 7 ((𝜑𝑚𝑆) → 𝐹𝐷)
82 simpr 488 . . . . . . 7 ((𝜑𝑚𝑆) → 𝑚𝑆)
831, 2psrbagconclOLD 20702 . . . . . . 7 ((𝐼𝑉𝐹𝐷𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
8480, 81, 82, 83syl3anc 1368 . . . . . 6 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
8512, 84sseldi 3892 . . . . 5 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝐷)
861psrbaglefiOLD 20700 . . . . 5 ((𝐼𝑉 ∧ (𝐹f𝑚) ∈ 𝐷) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
8780, 85, 86syl2anc 587 . . . 4 ((𝜑𝑚𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
88 xpfi 8827 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
8979, 79, 88syl2anc 587 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
90 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚𝑆)
917simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑗𝑆)
92 brxp 5574 . . . . . . 7 (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚𝑆𝑗𝑆))
9390, 91, 92sylanbrc 586 . . . . . 6 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗)
9493pm2.24d 154 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
9594impr 458 . . . 4 ((𝜑 ∧ ((𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
965, 76, 6, 79, 87, 74, 89, 95gsum2d2 19167 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
971psrbaglefiOLD 20700 . . . . 5 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
9811, 17, 97syl2anc 587 . . . 4 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
99 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
1001, 2, 3, 4gsumbagdiaglemOLD 20705 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}))
101100simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑚𝑆)
102 brxp 5574 . . . . . . 7 (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗𝑆𝑚𝑆))
10399, 101, 102sylanbrc 586 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚)
104103pm2.24d 154 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
105104impr 458 . . . 4 ((𝜑 ∧ ((𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
1065, 76, 6, 79, 98, 73, 89, 105gsum2d2 19167 . . 3 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
10775, 96, 1063eqtr3d 2801 . 2 (𝜑 → (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1086adantr 484 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐺 ∈ CMnd)
10974anassrs 471 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
110109fmpttd 6875 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑚)}⟶𝐵)
111 ovex 7188 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
1121, 111rabex2 5207 . . . . . . . . . . 11 𝐷 ∈ V
113112a1i 11 . . . . . . . . . 10 ((𝜑𝑚𝑆) → 𝐷 ∈ V)
114 rabexg 5204 . . . . . . . . . 10 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V)
115 mptexg 6980 . . . . . . . . . 10 ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
116113, 114, 1153syl 18 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
117 funmpt 6377 . . . . . . . . . 10 Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
118117a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
119 fvexd 6677 . . . . . . . . 9 ((𝜑𝑚𝑆) → (0g𝐺) ∈ V)
120 suppssdm 7856 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
121 eqid 2758 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
122121dmmptss 6074 . . . . . . . . . . 11 dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
123120, 122sstri 3903 . . . . . . . . . 10 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
124123a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
125 suppssfifsupp 8886 . . . . . . . . 9 ((((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
126116, 118, 119, 87, 124, 125syl32anc 1375 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
1275, 76, 108, 87, 110, 126gsumcl 19108 . . . . . . 7 ((𝜑𝑚𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) ∈ 𝐵)
128127fmpttd 6875 . . . . . 6 (𝜑 → (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵)
1291, 2psrbagconf1oOLD 20704 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
1303, 4, 129syl2anc 587 . . . . . . 7 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
131 f1ocnv 6618 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
132 f1of 6606 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
133130, 131, 1323syl 18 . . . . . 6 (𝜑(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
134 fco 6520 . . . . . 6 (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆) → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
135128, 133, 134syl2anc 587 . . . . 5 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
136 coass 6099 . . . . . . . 8 (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
137 f1ococnv2 6632 . . . . . . . . . 10 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
138130, 137syl 17 . . . . . . . . 9 (𝜑 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
139138coeq2d 5707 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
140136, 139syl5eq 2805 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
141 eqidd 2759 . . . . . . . . 9 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)) = (𝑚𝑆 ↦ (𝐹f𝑚)))
142 eqidd 2759 . . . . . . . . 9 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
143 breq2 5039 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑥r𝑛𝑥r ≤ (𝐹f𝑚)))
144143rabbidv 3392 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → {𝑥𝐷𝑥r𝑛} = {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
145 ovex 7188 . . . . . . . . . . . . 13 (𝑛f𝑗) ∈ V
146 psrass1lemOLD.y . . . . . . . . . . . . 13 (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
147145, 146csbie 3842 . . . . . . . . . . . 12 (𝑛f𝑗) / 𝑘𝑋 = 𝑌
148 oveq1 7162 . . . . . . . . . . . . 13 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) = ((𝐹f𝑚) ∘f𝑗))
149148csbeq1d 3811 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
150147, 149syl5eqr 2807 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → 𝑌 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
151144, 150mpteq12dv 5120 . . . . . . . . . 10 (𝑛 = (𝐹f𝑚) → (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
152151oveq2d 7171 . . . . . . . . 9 (𝑛 = (𝐹f𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
15384, 141, 142, 152fmptco 6887 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
154153coeq1d 5706 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
155 coires1 6098 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆)
156 ssid 3916 . . . . . . . . . 10 𝑆𝑆
157 resmpt 5881 . . . . . . . . . 10 (𝑆𝑆 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
158156, 157ax-mp 5 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
159155, 158eqtri 2781 . . . . . . . 8 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
160159a1i 11 . . . . . . 7 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
161140, 154, 1603eqtr3d 2801 . . . . . 6 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
162161feq1d 6487 . . . . 5 (𝜑 → (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵 ↔ (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵))
163135, 162mpbid 235 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵)
164 rabexg 5204 . . . . . . . 8 (𝐷 ∈ V → {𝑦𝐷𝑦r𝐹} ∈ V)
165112, 164mp1i 13 . . . . . . 7 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ V)
1662, 165eqeltrid 2856 . . . . . 6 (𝜑𝑆 ∈ V)
167166mptexd 6983 . . . . 5 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V)
168 funmpt 6377 . . . . . 6 Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
169168a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
170 fvexd 6677 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
171 suppssdm 7856 . . . . . . 7 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
172 eqid 2758 . . . . . . . 8 (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
173172dmmptss 6074 . . . . . . 7 dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ⊆ 𝑆
174171, 173sstri 3903 . . . . . 6 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆
175174a1i 11 . . . . 5 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)
176 suppssfifsupp 8886 . . . . 5 ((((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∧ (0g𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)) → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
177167, 169, 170, 79, 175, 176syl32anc 1375 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
1785, 76, 6, 79, 163, 177, 130gsumf1o 19109 . . 3 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))))
179153oveq2d 7171 . . 3 (𝜑 → (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
180178, 179eqtrd 2793 . 2 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1816adantr 484 . . . . . 6 ((𝜑𝑗𝑆) → 𝐺 ∈ CMnd)
182112a1i 11 . . . . . . . 8 ((𝜑𝑗𝑆) → 𝐷 ∈ V)
183 rabexg 5204 . . . . . . . 8 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
184 mptexg 6980 . . . . . . . 8 ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
185182, 183, 1843syl 18 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
186 funmpt 6377 . . . . . . . 8 Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
187186a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))
188 fvexd 6677 . . . . . . 7 ((𝜑𝑗𝑆) → (0g𝐺) ∈ V)
189 suppssdm 7856 . . . . . . . . 9 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
190 eqid 2758 . . . . . . . . . 10 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
191190dmmptss 6074 . . . . . . . . 9 dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
192189, 191sstri 3903 . . . . . . . 8 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
193192a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
194 suppssfifsupp 8886 . . . . . . 7 ((((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
195185, 187, 188, 98, 193, 194syl32anc 1375 . . . . . 6 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
1965, 76, 181, 98, 10, 195, 20gsumf1o 19109 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))))
19769oveq2d 7171 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
198196, 197eqtrd 2793 . . . 4 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
199198mpteq2dva 5130 . . 3 (𝜑 → (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))) = (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
200199oveq2d 7171 . 2 (𝜑 → (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
201107, 180, 2003eqtr4d 2803 1 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3074  Vcvv 3409  csb 3807  wss 3860   class class class wbr 5035  cmpt 5115   I cid 5432   × cxp 5525  ccnv 5526  dom cdm 5527  cres 5529  cima 5530  ccom 5531  Fun wfun 6333  wf 6335  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7155  cmpo 7157  f cof 7408  r cofr 7409   supp csupp 7840  m cmap 8421  Fincfn 8532   finSupp cfsupp 8871  cc 10578  cle 10719  cmin 10913  cn 11679  0cn0 11939  Basecbs 16546  0gc0g 16776   Σg cgsu 16777  CMndccmn 18978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-fzo 13088  df-seq 13424  df-hash 13746  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-0g 16778  df-gsum 16779  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-mulg 18297  df-cntz 18519  df-cmn 18980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator