MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lemOLD Structured version   Visualization version   GIF version

Theorem psrass1lemOLD 21053
Description: Obsolete version of psrass1lem 21056 as of 7-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiagOLD.i (𝜑𝐼𝑉)
gsumbagdiagOLD.f (𝜑𝐹𝐷)
gsumbagdiagOLD.b 𝐵 = (Base‘𝐺)
gsumbagdiagOLD.g (𝜑𝐺 ∈ CMnd)
gsumbagdiagOLD.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
psrass1lemOLD.y (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
Assertion
Ref Expression
psrass1lemOLD (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑛,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑛,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑓,𝐼,𝑛,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑛,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑛,𝑥,𝑦   𝑓,𝑋,𝑛,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑛)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑛)

Proof of Theorem psrass1lemOLD
Dummy variables 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 psrbagconf1o.s . . . 4 𝑆 = {𝑦𝐷𝑦r𝐹}
3 gsumbagdiagOLD.i . . . 4 (𝜑𝐼𝑉)
4 gsumbagdiagOLD.f . . . 4 (𝜑𝐹𝐷)
5 gsumbagdiagOLD.b . . . 4 𝐵 = (Base‘𝐺)
6 gsumbagdiagOLD.g . . . 4 (𝜑𝐺 ∈ CMnd)
71, 2, 3, 4gsumbagdiaglemOLD 21051 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
8 gsumbagdiagOLD.x . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
98anassrs 467 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑋𝐵)
109fmpttd 6971 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
113adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → 𝐼𝑉)
122ssrab3 4011 . . . . . . . . . . . 12 𝑆𝐷
134adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → 𝐹𝐷)
14 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → 𝑗𝑆)
151, 2psrbagconclOLD 21048 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1611, 13, 14, 15syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1712, 16sselid 3915 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝐷)
18 eqid 2738 . . . . . . . . . . . 12 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} = {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
191, 18psrbagconf1oOLD 21050 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
2011, 17, 19syl2anc 583 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
21 f1of 6700 . . . . . . . . . 10 ((𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)} → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
2220, 21syl 17 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
23 fco 6608 . . . . . . . . 9 (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ∧ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
2410, 22, 23syl2anc 583 . . . . . . . 8 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
2511adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐼𝑉)
2613adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹𝐷)
271psrbagfOLD 21032 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2825, 26, 27syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹:𝐼⟶ℕ0)
2928ffvelrnda 6943 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
3014adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝑆)
3112, 30sselid 3915 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝐷)
321psrbagfOLD 21032 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑗𝐷) → 𝑗:𝐼⟶ℕ0)
3325, 31, 32syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗:𝐼⟶ℕ0)
3433ffvelrnda 6943 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
35 ssrab2 4009 . . . . . . . . . . . . . . . . 17 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ⊆ 𝐷
36 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
3735, 36sselid 3915 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚𝐷)
381psrbagfOLD 21032 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑚𝐷) → 𝑚:𝐼⟶ℕ0)
3925, 37, 38syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚:𝐼⟶ℕ0)
4039ffvelrnda 6943 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑚𝑧) ∈ ℕ0)
41 nn0cn 12173 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℂ)
42 nn0cn 12173 . . . . . . . . . . . . . . 15 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
43 nn0cn 12173 . . . . . . . . . . . . . . 15 ((𝑚𝑧) ∈ ℕ0 → (𝑚𝑧) ∈ ℂ)
44 sub32 11185 . . . . . . . . . . . . . . 15 (((𝐹𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ ∧ (𝑚𝑧) ∈ ℂ) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4541, 42, 43, 44syl3an 1158 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0 ∧ (𝑚𝑧) ∈ ℕ0) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4629, 34, 40, 45syl3anc 1369 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4746mpteq2dva 5170 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
48 ovexd 7290 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑗𝑧)) ∈ V)
4928feqmptd 6819 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹 = (𝑧𝐼 ↦ (𝐹𝑧)))
5033feqmptd 6819 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
5125, 29, 34, 49, 50offval2 7531 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑗𝑧))))
5239feqmptd 6819 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 = (𝑧𝐼 ↦ (𝑚𝑧)))
5325, 48, 40, 51, 52offval2 7531 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))))
54 ovexd 7290 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑚𝑧)) ∈ V)
5525, 29, 40, 49, 52offval2 7531 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑚) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑚𝑧))))
5625, 54, 34, 55, 50offval2 7531 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
5747, 53, 563eqtr4d 2788 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = ((𝐹f𝑚) ∘f𝑗))
5817adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) ∈ 𝐷)
591, 18psrbagconclOLD 21048 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6025, 58, 36, 59syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6157, 60eqeltrrd 2840 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6257mpteq2dva 5170 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗)))
63 nfcv 2906 . . . . . . . . . . . 12 𝑛𝑋
64 nfcsb1v 3853 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝑋
65 csbeq1a 3842 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑋 = 𝑛 / 𝑘𝑋)
6663, 64, 65cbvmpt 5181 . . . . . . . . . . 11 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋)
6766a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋))
68 csbeq1 3831 . . . . . . . . . 10 (𝑛 = ((𝐹f𝑚) ∘f𝑗) → 𝑛 / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
6961, 62, 67, 68fmptco 6983 . . . . . . . . 9 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
7069feq1d 6569 . . . . . . . 8 ((𝜑𝑗𝑆) → (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵))
7124, 70mpbid 231 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
7271fvmptelrn 6969 . . . . . 6 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
7372anasss 466 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
747, 73syldan 590 . . . 4 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
751, 2, 3, 4, 5, 6, 74gsumbagdiagOLD 21052 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
76 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
771psrbaglefiOLD 21046 . . . . . 6 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
783, 4, 77syl2anc 583 . . . . 5 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
792, 78eqeltrid 2843 . . . 4 (𝜑𝑆 ∈ Fin)
803adantr 480 . . . . 5 ((𝜑𝑚𝑆) → 𝐼𝑉)
814adantr 480 . . . . . . 7 ((𝜑𝑚𝑆) → 𝐹𝐷)
82 simpr 484 . . . . . . 7 ((𝜑𝑚𝑆) → 𝑚𝑆)
831, 2psrbagconclOLD 21048 . . . . . . 7 ((𝐼𝑉𝐹𝐷𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
8480, 81, 82, 83syl3anc 1369 . . . . . 6 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
8512, 84sselid 3915 . . . . 5 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝐷)
861psrbaglefiOLD 21046 . . . . 5 ((𝐼𝑉 ∧ (𝐹f𝑚) ∈ 𝐷) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
8780, 85, 86syl2anc 583 . . . 4 ((𝜑𝑚𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
88 xpfi 9015 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
8979, 79, 88syl2anc 583 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
90 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚𝑆)
917simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑗𝑆)
92 brxp 5627 . . . . . . 7 (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚𝑆𝑗𝑆))
9390, 91, 92sylanbrc 582 . . . . . 6 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗)
9493pm2.24d 151 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
9594impr 454 . . . 4 ((𝜑 ∧ ((𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
965, 76, 6, 79, 87, 74, 89, 95gsum2d2 19490 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
971psrbaglefiOLD 21046 . . . . 5 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
9811, 17, 97syl2anc 583 . . . 4 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
99 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
1001, 2, 3, 4gsumbagdiaglemOLD 21051 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}))
101100simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑚𝑆)
102 brxp 5627 . . . . . . 7 (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗𝑆𝑚𝑆))
10399, 101, 102sylanbrc 582 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚)
104103pm2.24d 151 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
105104impr 454 . . . 4 ((𝜑 ∧ ((𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
1065, 76, 6, 79, 98, 73, 89, 105gsum2d2 19490 . . 3 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
10775, 96, 1063eqtr3d 2786 . 2 (𝜑 → (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1086adantr 480 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐺 ∈ CMnd)
10974anassrs 467 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
110109fmpttd 6971 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑚)}⟶𝐵)
111 ovex 7288 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
1121, 111rabex2 5253 . . . . . . . . . . 11 𝐷 ∈ V
113112a1i 11 . . . . . . . . . 10 ((𝜑𝑚𝑆) → 𝐷 ∈ V)
114 rabexg 5250 . . . . . . . . . 10 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V)
115 mptexg 7079 . . . . . . . . . 10 ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
116113, 114, 1153syl 18 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
117 funmpt 6456 . . . . . . . . . 10 Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
118117a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
119 fvexd 6771 . . . . . . . . 9 ((𝜑𝑚𝑆) → (0g𝐺) ∈ V)
120 suppssdm 7964 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
121 eqid 2738 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
122121dmmptss 6133 . . . . . . . . . . 11 dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
123120, 122sstri 3926 . . . . . . . . . 10 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
124123a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
125 suppssfifsupp 9073 . . . . . . . . 9 ((((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
126116, 118, 119, 87, 124, 125syl32anc 1376 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
1275, 76, 108, 87, 110, 126gsumcl 19431 . . . . . . 7 ((𝜑𝑚𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) ∈ 𝐵)
128127fmpttd 6971 . . . . . 6 (𝜑 → (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵)
1291, 2psrbagconf1oOLD 21050 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
1303, 4, 129syl2anc 583 . . . . . . 7 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
131 f1ocnv 6712 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
132 f1of 6700 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
133130, 131, 1323syl 18 . . . . . 6 (𝜑(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
134 fco 6608 . . . . . 6 (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆) → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
135128, 133, 134syl2anc 583 . . . . 5 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
136 coass 6158 . . . . . . . 8 (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
137 f1ococnv2 6726 . . . . . . . . . 10 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
138130, 137syl 17 . . . . . . . . 9 (𝜑 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
139138coeq2d 5760 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
140136, 139eqtrid 2790 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
141 eqidd 2739 . . . . . . . . 9 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)) = (𝑚𝑆 ↦ (𝐹f𝑚)))
142 eqidd 2739 . . . . . . . . 9 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
143 breq2 5074 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑥r𝑛𝑥r ≤ (𝐹f𝑚)))
144143rabbidv 3404 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → {𝑥𝐷𝑥r𝑛} = {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
145 ovex 7288 . . . . . . . . . . . . 13 (𝑛f𝑗) ∈ V
146 psrass1lemOLD.y . . . . . . . . . . . . 13 (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
147145, 146csbie 3864 . . . . . . . . . . . 12 (𝑛f𝑗) / 𝑘𝑋 = 𝑌
148 oveq1 7262 . . . . . . . . . . . . 13 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) = ((𝐹f𝑚) ∘f𝑗))
149148csbeq1d 3832 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
150147, 149eqtr3id 2793 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → 𝑌 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
151144, 150mpteq12dv 5161 . . . . . . . . . 10 (𝑛 = (𝐹f𝑚) → (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
152151oveq2d 7271 . . . . . . . . 9 (𝑛 = (𝐹f𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
15384, 141, 142, 152fmptco 6983 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
154153coeq1d 5759 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
155 coires1 6157 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆)
156 ssid 3939 . . . . . . . . . 10 𝑆𝑆
157 resmpt 5934 . . . . . . . . . 10 (𝑆𝑆 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
158156, 157ax-mp 5 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
159155, 158eqtri 2766 . . . . . . . 8 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
160159a1i 11 . . . . . . 7 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
161140, 154, 1603eqtr3d 2786 . . . . . 6 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
162161feq1d 6569 . . . . 5 (𝜑 → (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵 ↔ (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵))
163135, 162mpbid 231 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵)
164 rabexg 5250 . . . . . . . 8 (𝐷 ∈ V → {𝑦𝐷𝑦r𝐹} ∈ V)
165112, 164mp1i 13 . . . . . . 7 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ V)
1662, 165eqeltrid 2843 . . . . . 6 (𝜑𝑆 ∈ V)
167166mptexd 7082 . . . . 5 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V)
168 funmpt 6456 . . . . . 6 Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
169168a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
170 fvexd 6771 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
171 suppssdm 7964 . . . . . . 7 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
172 eqid 2738 . . . . . . . 8 (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
173172dmmptss 6133 . . . . . . 7 dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ⊆ 𝑆
174171, 173sstri 3926 . . . . . 6 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆
175174a1i 11 . . . . 5 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)
176 suppssfifsupp 9073 . . . . 5 ((((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∧ (0g𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)) → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
177167, 169, 170, 79, 175, 176syl32anc 1376 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
1785, 76, 6, 79, 163, 177, 130gsumf1o 19432 . . 3 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))))
179153oveq2d 7271 . . 3 (𝜑 → (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
180178, 179eqtrd 2778 . 2 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1816adantr 480 . . . . . 6 ((𝜑𝑗𝑆) → 𝐺 ∈ CMnd)
182112a1i 11 . . . . . . . 8 ((𝜑𝑗𝑆) → 𝐷 ∈ V)
183 rabexg 5250 . . . . . . . 8 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
184 mptexg 7079 . . . . . . . 8 ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
185182, 183, 1843syl 18 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
186 funmpt 6456 . . . . . . . 8 Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
187186a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))
188 fvexd 6771 . . . . . . 7 ((𝜑𝑗𝑆) → (0g𝐺) ∈ V)
189 suppssdm 7964 . . . . . . . . 9 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
190 eqid 2738 . . . . . . . . . 10 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
191190dmmptss 6133 . . . . . . . . 9 dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
192189, 191sstri 3926 . . . . . . . 8 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
193192a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
194 suppssfifsupp 9073 . . . . . . 7 ((((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
195185, 187, 188, 98, 193, 194syl32anc 1376 . . . . . 6 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
1965, 76, 181, 98, 10, 195, 20gsumf1o 19432 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))))
19769oveq2d 7271 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
198196, 197eqtrd 2778 . . . 4 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
199198mpteq2dva 5170 . . 3 (𝜑 → (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))) = (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
200199oveq2d 7271 . 2 (𝜑 → (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
201107, 180, 2003eqtr4d 2788 1 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  csb 3828  wss 3883   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  ccom 5584  Fun wfun 6412  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  f cof 7509  r cofr 7510   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800  cle 10941  cmin 11135  cn 11903  0cn0 12163  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator