Step | Hyp | Ref
| Expression |
1 | | psrbag.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
2 | | psrbagconf1o.s |
. . . 4
⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
3 | | gsumbagdiagOLD.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
4 | | gsumbagdiagOLD.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
5 | | gsumbagdiagOLD.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
6 | | gsumbagdiagOLD.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) |
7 | 1, 2, 3, 4 | gsumbagdiaglemOLD 21051 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) |
8 | | gsumbagdiagOLD.x |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) |
9 | 8 | anassrs 467 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑋 ∈ 𝐵) |
10 | 9 | fmpttd 6971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵) |
11 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐼 ∈ 𝑉) |
12 | 2 | ssrab3 4011 |
. . . . . . . . . . . 12
⊢ 𝑆 ⊆ 𝐷 |
13 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐹 ∈ 𝐷) |
14 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ 𝑆) |
15 | 1, 2 | psrbagconclOLD 21048 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑗 ∈ 𝑆) → (𝐹 ∘f − 𝑗) ∈ 𝑆) |
16 | 11, 13, 14, 15 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐹 ∘f − 𝑗) ∈ 𝑆) |
17 | 12, 16 | sselid 3915 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐹 ∘f − 𝑗) ∈ 𝐷) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} |
19 | 1, 18 | psrbagconf1oOLD 21050 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∘f − 𝑗) ∈ 𝐷) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}–1-1-onto→{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
20 | 11, 17, 19 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}–1-1-onto→{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
21 | | f1of 6700 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}–1-1-onto→{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
23 | | fco 6608 |
. . . . . . . . 9
⊢ (((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵 ∧ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵) |
24 | 10, 22, 23 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵) |
25 | 11 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐼 ∈ 𝑉) |
26 | 13 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐹 ∈ 𝐷) |
27 | 1 | psrbagfOLD 21032 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐼⟶ℕ0) |
28 | 25, 26, 27 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐹:𝐼⟶ℕ0) |
29 | 28 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) ∈
ℕ0) |
30 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗 ∈ 𝑆) |
31 | 12, 30 | sselid 3915 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗 ∈ 𝐷) |
32 | 1 | psrbagfOLD 21032 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐷) → 𝑗:𝐼⟶ℕ0) |
33 | 25, 31, 32 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗:𝐼⟶ℕ0) |
34 | 33 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (𝑗‘𝑧) ∈
ℕ0) |
35 | | ssrab2 4009 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ⊆ 𝐷 |
36 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
37 | 35, 36 | sselid 3915 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚 ∈ 𝐷) |
38 | 1 | psrbagfOLD 21032 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑚 ∈ 𝐷) → 𝑚:𝐼⟶ℕ0) |
39 | 25, 37, 38 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚:𝐼⟶ℕ0) |
40 | 39 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (𝑚‘𝑧) ∈
ℕ0) |
41 | | nn0cn 12173 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑧) ∈ ℕ0 → (𝐹‘𝑧) ∈ ℂ) |
42 | | nn0cn 12173 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗‘𝑧) ∈ ℕ0 → (𝑗‘𝑧) ∈ ℂ) |
43 | | nn0cn 12173 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚‘𝑧) ∈ ℕ0 → (𝑚‘𝑧) ∈ ℂ) |
44 | | sub32 11185 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑧) ∈ ℂ ∧ (𝑗‘𝑧) ∈ ℂ ∧ (𝑚‘𝑧) ∈ ℂ) → (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)) = (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧))) |
45 | 41, 42, 43, 44 | syl3an 1158 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑧) ∈ ℕ0 ∧ (𝑗‘𝑧) ∈ ℕ0 ∧ (𝑚‘𝑧) ∈ ℕ0) → (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)) = (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧))) |
46 | 29, 34, 40, 45 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)) = (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧))) |
47 | 46 | mpteq2dva 5170 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧)))) |
48 | | ovexd 7290 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑧) − (𝑗‘𝑧)) ∈ V) |
49 | 28 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐹 = (𝑧 ∈ 𝐼 ↦ (𝐹‘𝑧))) |
50 | 33 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗 = (𝑧 ∈ 𝐼 ↦ (𝑗‘𝑧))) |
51 | 25, 29, 34, 49, 50 | offval2 7531 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → (𝐹 ∘f − 𝑗) = (𝑧 ∈ 𝐼 ↦ ((𝐹‘𝑧) − (𝑗‘𝑧)))) |
52 | 39 | feqmptd 6819 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚 = (𝑧 ∈ 𝐼 ↦ (𝑚‘𝑧))) |
53 | 25, 48, 40, 51, 52 | offval2 7531 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) = (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)))) |
54 | | ovexd 7290 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑧) − (𝑚‘𝑧)) ∈ V) |
55 | 25, 29, 40, 49, 52 | offval2 7531 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → (𝐹 ∘f − 𝑚) = (𝑧 ∈ 𝐼 ↦ ((𝐹‘𝑧) − (𝑚‘𝑧)))) |
56 | 25, 54, 34, 55, 50 | offval2 7531 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑚) ∘f −
𝑗) = (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧)))) |
57 | 47, 53, 56 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) = ((𝐹 ∘f − 𝑚) ∘f −
𝑗)) |
58 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → (𝐹 ∘f − 𝑗) ∈ 𝐷) |
59 | 1, 18 | psrbagconclOLD 21048 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∘f − 𝑗) ∈ 𝐷 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
60 | 25, 58, 36, 59 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
61 | 57, 60 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑚) ∘f −
𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
62 | 57 | mpteq2dva 5170 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)) = (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑚) ∘f −
𝑗))) |
63 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑋 |
64 | | nfcsb1v 3853 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝑋 |
65 | | csbeq1a 3842 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → 𝑋 = ⦋𝑛 / 𝑘⦌𝑋) |
66 | 63, 64, 65 | cbvmpt 5181 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ⦋𝑛 / 𝑘⦌𝑋) |
67 | 66 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ⦋𝑛 / 𝑘⦌𝑋)) |
68 | | csbeq1 3831 |
. . . . . . . . . 10
⊢ (𝑛 = ((𝐹 ∘f − 𝑚) ∘f −
𝑗) →
⦋𝑛 / 𝑘⦌𝑋 = ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋) |
69 | 61, 62, 67, 68 | fmptco 6983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))) = (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) |
70 | 69 | feq1d 6569 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵)) |
71 | 24, 70 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵) |
72 | 71 | fvmptelrn 6969 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
73 | 72 | anasss 466 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
74 | 7, 73 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
75 | 1, 2, 3, 4, 5, 6, 74 | gsumbagdiagOLD 21052 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑚 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) = (𝐺 Σg (𝑗 ∈ 𝑆, 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
76 | | eqid 2738 |
. . . 4
⊢
(0g‘𝐺) = (0g‘𝐺) |
77 | 1 | psrbaglefiOLD 21046 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
78 | 3, 4, 77 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
79 | 2, 78 | eqeltrid 2843 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Fin) |
80 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐼 ∈ 𝑉) |
81 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐹 ∈ 𝐷) |
82 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ 𝑆) |
83 | 1, 2 | psrbagconclOLD 21048 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑚 ∈ 𝑆) → (𝐹 ∘f − 𝑚) ∈ 𝑆) |
84 | 80, 81, 82, 83 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐹 ∘f − 𝑚) ∈ 𝑆) |
85 | 12, 84 | sselid 3915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐹 ∘f − 𝑚) ∈ 𝐷) |
86 | 1 | psrbaglefiOLD 21046 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∘f − 𝑚) ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ Fin) |
87 | 80, 85, 86 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ Fin) |
88 | | xpfi 9015 |
. . . . 5
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin) |
89 | 79, 79, 88 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑆 × 𝑆) ∈ Fin) |
90 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → 𝑚 ∈ 𝑆) |
91 | 7 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → 𝑗 ∈ 𝑆) |
92 | | brxp 5627 |
. . . . . . 7
⊢ (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ 𝑆)) |
93 | 90, 91, 92 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗) |
94 | 93 | pm2.24d 151 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗 → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺))) |
95 | 94 | impr 454 |
. . . 4
⊢ ((𝜑 ∧ ((𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺)) |
96 | 5, 76, 6, 79, 87, 74, 89, 95 | gsum2d2 19490 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑚 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) = (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
97 | 1 | psrbaglefiOLD 21046 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∘f − 𝑗) ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ Fin) |
98 | 11, 17, 97 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ Fin) |
99 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗 ∈ 𝑆) |
100 | 1, 2, 3, 4 | gsumbagdiaglemOLD 21051 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) |
101 | 100 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑚 ∈ 𝑆) |
102 | | brxp 5627 |
. . . . . . 7
⊢ (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ 𝑆)) |
103 | 99, 101, 102 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚) |
104 | 103 | pm2.24d 151 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚 → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺))) |
105 | 104 | impr 454 |
. . . 4
⊢ ((𝜑 ∧ ((𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺)) |
106 | 5, 76, 6, 79, 98, 73, 89, 105 | gsum2d2 19490 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
107 | 75, 96, 106 | 3eqtr3d 2786 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)))) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
108 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐺 ∈ CMnd) |
109 | 74 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
110 | 109 | fmpttd 6971 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}⟶𝐵) |
111 | | ovex 7288 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑m 𝐼) ∈ V |
112 | 1, 111 | rabex2 5253 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ V |
113 | 112 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐷 ∈ V) |
114 | | rabexg 5250 |
. . . . . . . . . 10
⊢ (𝐷 ∈ V → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ V) |
115 | | mptexg 7079 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ V → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∈ V) |
116 | 113, 114,
115 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∈ V) |
117 | | funmpt 6456 |
. . . . . . . . . 10
⊢ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) |
118 | 117 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → Fun (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) |
119 | | fvexd 6771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (0g‘𝐺) ∈ V) |
120 | | suppssdm 7964 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ dom (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) |
121 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) = (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) |
122 | 121 | dmmptss 6133 |
. . . . . . . . . . 11
⊢ dom
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} |
123 | 120, 122 | sstri 3926 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} |
124 | 123 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) |
125 | | suppssfifsupp 9073 |
. . . . . . . . 9
⊢ ((((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∧ (0g‘𝐺) ∈ V) ∧ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) finSupp (0g‘𝐺)) |
126 | 116, 118,
119, 87, 124, 125 | syl32anc 1376 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) finSupp (0g‘𝐺)) |
127 | 5, 76, 108, 87, 110, 126 | gsumcl 19431 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) ∈ 𝐵) |
128 | 127 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))):𝑆⟶𝐵) |
129 | 1, 2 | psrbagconf1oOLD 21050 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆) |
130 | 3, 4, 129 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆) |
131 | | f1ocnv 6712 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆 → ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆) |
132 | | f1of 6700 |
. . . . . . 7
⊢ (◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆 → ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆⟶𝑆) |
133 | 130, 131,
132 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆⟶𝑆) |
134 | | fco 6608 |
. . . . . 6
⊢ (((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))):𝑆⟶𝐵 ∧ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆⟶𝑆) → ((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))):𝑆⟶𝐵) |
135 | 128, 133,
134 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))):𝑆⟶𝐵) |
136 | | coass 6158 |
. . . . . . . 8
⊢ (((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) |
137 | | f1ococnv2 6726 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆 → ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ( I ↾ 𝑆)) |
138 | 130, 137 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ( I ↾ 𝑆)) |
139 | 138 | coeq2d 5760 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆))) |
140 | 136, 139 | eqtrid 2790 |
. . . . . . 7
⊢ (𝜑 → (((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆))) |
141 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) = (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) |
142 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
143 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝑥 ∘r ≤ 𝑛 ↔ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚))) |
144 | 143 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) |
145 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∘f −
𝑗) ∈
V |
146 | | psrass1lemOLD.y |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 ∘f − 𝑗) → 𝑋 = 𝑌) |
147 | 145, 146 | csbie 3864 |
. . . . . . . . . . . 12
⊢
⦋(𝑛
∘f − 𝑗) / 𝑘⦌𝑋 = 𝑌 |
148 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝑛 ∘f − 𝑗) = ((𝐹 ∘f − 𝑚) ∘f −
𝑗)) |
149 | 148 | csbeq1d 3832 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → ⦋(𝑛 ∘f −
𝑗) / 𝑘⦌𝑋 = ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋) |
150 | 147, 149 | eqtr3id 2793 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → 𝑌 = ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋) |
151 | 144, 150 | mpteq12dv 5161 |
. . . . . . . . . 10
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) |
152 | 151 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
153 | 84, 141, 142, 152 | fmptco 6983 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)))) |
154 | 153 | coeq1d 5759 |
. . . . . . 7
⊢ (𝜑 → (((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) |
155 | | coires1 6157 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ↾ 𝑆) |
156 | | ssid 3939 |
. . . . . . . . . 10
⊢ 𝑆 ⊆ 𝑆 |
157 | | resmpt 5934 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ 𝑆 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
158 | 156, 157 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
159 | 155, 158 | eqtri 2766 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
160 | 159 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
161 | 140, 154,
160 | 3eqtr3d 2786 |
. . . . . 6
⊢ (𝜑 → ((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
162 | 161 | feq1d 6569 |
. . . . 5
⊢ (𝜑 → (((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))):𝑆⟶𝐵 ↔ (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))):𝑆⟶𝐵)) |
163 | 135, 162 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))):𝑆⟶𝐵) |
164 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝐷 ∈ V → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ V) |
165 | 112, 164 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ V) |
166 | 2, 165 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
167 | 166 | mptexd 7082 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∈ V) |
168 | | funmpt 6456 |
. . . . . 6
⊢ Fun
(𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
169 | 168 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
170 | | fvexd 6771 |
. . . . 5
⊢ (𝜑 → (0g‘𝐺) ∈ V) |
171 | | suppssdm 7964 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ dom (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
172 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
173 | 172 | dmmptss 6133 |
. . . . . . 7
⊢ dom
(𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ⊆ 𝑆 |
174 | 171, 173 | sstri 3926 |
. . . . . 6
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ 𝑆 |
175 | 174 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ 𝑆) |
176 | | suppssfifsupp 9073 |
. . . . 5
⊢ ((((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∧ (0g‘𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ 𝑆)) → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) finSupp (0g‘𝐺)) |
177 | 167, 169,
170, 79, 175, 176 | syl32anc 1376 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) finSupp (0g‘𝐺)) |
178 | 5, 76, 6, 79, 163, 177, 130 | gsumf1o 19432 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))))) |
179 | 153 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) = (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
180 | 178, 179 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
181 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐺 ∈ CMnd) |
182 | 112 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐷 ∈ V) |
183 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝐷 ∈ V → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V) |
184 | | mptexg 7079 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∈ V) |
185 | 182, 183,
184 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∈ V) |
186 | | funmpt 6456 |
. . . . . . . 8
⊢ Fun
(𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) |
187 | 186 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → Fun (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) |
188 | | fvexd 6771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (0g‘𝐺) ∈ V) |
189 | | suppssdm 7964 |
. . . . . . . . 9
⊢ ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ dom (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) |
190 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) |
191 | 190 | dmmptss 6133 |
. . . . . . . . 9
⊢ dom
(𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} |
192 | 189, 191 | sstri 3926 |
. . . . . . . 8
⊢ ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} |
193 | 192 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
194 | | suppssfifsupp 9073 |
. . . . . . 7
⊢ ((((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∧ (0g‘𝐺) ∈ V) ∧ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) finSupp (0g‘𝐺)) |
195 | 185, 187,
188, 98, 193, 194 | syl32anc 1376 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) finSupp (0g‘𝐺)) |
196 | 5, 76, 181, 98, 10, 195, 20 | gsumf1o 19432 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))))) |
197 | 69 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
198 | 196, 197 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
199 | 198 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋))) = (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)))) |
200 | 199 | oveq2d 7271 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
201 | 107, 180,
200 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋))))) |