MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq2 Structured version   Visualization version   GIF version

Theorem 2sq2 26797
Description: 2 is the sum of squares of two nonnegative integers iff the two integers are 1. (Contributed by AV, 19-Jun-2023.)
Assertion
Ref Expression
2sq2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))

Proof of Theorem 2sq2
StepHypRef Expression
1 nn0sqcl 14002 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
2 nn0sqcl 14002 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
32nn0red 12481 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
41, 3anim12ci 615 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
54adantr 482 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
6 nn0addge2 12467 . . . . 5 (((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
75, 6syl 17 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
8 breq2 5114 . . . . . 6 (((𝐴↑2) + (𝐵↑2)) = 2 → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
98adantl 483 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
102ad2antlr 726 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ∈ ℕ0)
11 nn0le2is012 12574 . . . . . . . 8 (((𝐵↑2) ∈ ℕ0 ∧ (𝐵↑2) ≤ 2) → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2))
1211ex 414 . . . . . . 7 ((𝐵↑2) ∈ ℕ0 → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
1310, 12syl 17 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
14 oveq2 7370 . . . . . . . . . . 11 ((𝐵↑2) = 0 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 0))
1514eqeq1d 2739 . . . . . . . . . 10 ((𝐵↑2) = 0 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
1615adantl 483 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
171nn0cnd 12482 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℂ)
1817addid1d 11362 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐴↑2) + 0) = (𝐴↑2))
1918adantr 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) + 0) = (𝐴↑2))
2019eqeq1d 2739 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 ↔ (𝐴↑2) = 2))
211nn0red 12481 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℝ)
22 nn0re 12429 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2322sqge0d 14049 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ (𝐴↑2))
24 2nn0 12437 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → 2 ∈ ℕ0)
2625nn0red 12481 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℝ)
27 0le2 12262 . . . . . . . . . . . . . . 15 0 ≤ 2
2827a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 2)
29 sqrt11 15154 . . . . . . . . . . . . . 14 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
3021, 23, 26, 28, 29syl22anc 838 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
31 nn0ge0 12445 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
3222, 31sqrtsqd 15311 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → (√‘(𝐴↑2)) = 𝐴)
3332eqeq1d 2739 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ 𝐴 = (√‘2)))
34 sqrt2irr 16138 . . . . . . . . . . . . . . 15 (√‘2) ∉ ℚ
35 df-nel 3051 . . . . . . . . . . . . . . . 16 ((√‘2) ∉ ℚ ↔ ¬ (√‘2) ∈ ℚ)
36 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((√‘2) = 𝐴 → (√‘2) = 𝐴)
3736eqcoms 2745 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (√‘2) → (√‘2) = 𝐴)
3837eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐴 ∈ ℚ))
3938notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (√‘2) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
4039adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
41 nn0z 12531 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
42 zq 12886 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
4443pm2.24d 151 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0 → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4544adantr 482 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4640, 45sylbid 239 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4746com12 32 . . . . . . . . . . . . . . . . 17 (¬ (√‘2) ∈ ℚ → ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
4847expd 417 . . . . . . . . . . . . . . . 16 (¬ (√‘2) ∈ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
4935, 48sylbi 216 . . . . . . . . . . . . . . 15 ((√‘2) ∉ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
5034, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5133, 50sylbid 239 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5230, 51sylbird 260 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5352adantr 482 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5420, 53sylbid 239 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5554adantr 482 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5616, 55sylbid 239 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5756impancom 453 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 0 → (𝐴 = 1 ∧ 𝐵 = 1)))
58 oveq2 7370 . . . . . . . . . . 11 ((𝐵↑2) = 1 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 1))
5958eqeq1d 2739 . . . . . . . . . 10 ((𝐵↑2) = 1 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 1) = 2))
60 2cnd 12238 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℂ)
61 1cnd 11157 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 1 ∈ ℂ)
6260, 61, 173jca 1129 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
6362adantr 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
64 subadd2 11412 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6563, 64syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6665bicomd 222 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 1) = 2 ↔ (2 − 1) = (𝐴↑2)))
6759, 66sylan9bbr 512 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (2 − 1) = (𝐴↑2)))
68 nn0sqeq1 15168 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0 ∧ (𝐵↑2) = 1) → 𝐵 = 1)
6968ex 414 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 1 → 𝐵 = 1))
7069adantl 483 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → 𝐵 = 1))
71 2m1e1 12286 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 − 1) = 1)
7372eqeq1d 2739 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ 1 = (𝐴↑2)))
74 eqcom 2744 . . . . . . . . . . . . . 14 (1 = (𝐴↑2) ↔ (𝐴↑2) = 1)
7573, 74bitrdi 287 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ (𝐴↑2) = 1))
76 nn0sqeq1 15168 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐴↑2) = 1) → 𝐴 = 1)
7776ex 414 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 1 → 𝐴 = 1))
7877adantr 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → 𝐴 = 1))
79 id 22 . . . . . . . . . . . . . . 15 ((𝐴 = 1 ∧ 𝐵 = 1) → (𝐴 = 1 ∧ 𝐵 = 1))
8079ex 414 . . . . . . . . . . . . . 14 (𝐴 = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
8178, 80syl6 35 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8275, 81sylbid 239 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8382com23 86 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐵 = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8470, 83syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8584imp 408 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1)))
8667, 85sylbid 239 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
8786impancom 453 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
88 nn0re 12429 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
89 nn0ge0 12445 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
9088, 89sqrtsqd 15311 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (√‘(𝐵↑2)) = 𝐵)
9190eqcomd 2743 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
9291eqeq1d 2739 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (√‘(𝐵↑2)) = (√‘2)))
9388sqge0d 14049 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
94 2re 12234 . . . . . . . . . . . 12 2 ∈ ℝ
9594a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 2 ∈ ℝ)
9627a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ 2)
97 sqrt11 15154 . . . . . . . . . . 11 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
983, 93, 95, 96, 97syl22anc 838 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
9992, 98bitrd 279 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (𝐵↑2) = 2))
100 id 22 . . . . . . . . . . . . . . . . . 18 ((√‘2) = 𝐵 → (√‘2) = 𝐵)
101100eqcoms 2745 . . . . . . . . . . . . . . . . 17 (𝐵 = (√‘2) → (√‘2) = 𝐵)
102101eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝐵 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
103102adantl 483 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
104103notbid 318 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐵 ∈ ℚ))
105 nn0z 12531 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
106 zq 12886 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
107105, 106syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0𝐵 ∈ ℚ)
108107pm2.24d 151 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
109108adantr 482 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
110104, 109sylbid 239 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
111110com12 32 . . . . . . . . . . . 12 (¬ (√‘2) ∈ ℚ → ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
112111expd 417 . . . . . . . . . . 11 (¬ (√‘2) ∈ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11335, 112sylbi 216 . . . . . . . . . 10 ((√‘2) ∉ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11434, 113ax-mp 5 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11599, 114sylbird 260 . . . . . . . 8 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
116115ad2antlr 726 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
11757, 87, 1163jaod 1429 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11813, 117syld 47 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
1199, 118sylbid 239 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
1207, 119mpd 15 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐴 = 1 ∧ 𝐵 = 1))
121120ex 414 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
122 oveq1 7369 . . . . 5 (𝐴 = 1 → (𝐴↑2) = (1↑2))
123 sq1 14106 . . . . 5 (1↑2) = 1
124122, 123eqtrdi 2793 . . . 4 (𝐴 = 1 → (𝐴↑2) = 1)
125 oveq1 7369 . . . . 5 (𝐵 = 1 → (𝐵↑2) = (1↑2))
126125, 123eqtrdi 2793 . . . 4 (𝐵 = 1 → (𝐵↑2) = 1)
127124, 126oveqan12d 7381 . . 3 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = (1 + 1))
128 1p1e2 12285 . . 3 (1 + 1) = 2
129127, 128eqtrdi 2793 . 2 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = 2)
130121, 129impbid1 224 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wnel 3050   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11056  cr 11057  0cc0 11058  1c1 11059   + caddc 11061  cle 11197  cmin 11392  2c2 12215  0cn0 12420  cz 12506  cq 12880  cexp 13974  csqrt 15125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128
This theorem is referenced by:  2sqreultblem  26812  2sqreunnltblem  26815
  Copyright terms: Public domain W3C validator