MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq2 Structured version   Visualization version   GIF version

Theorem 2sq2 27320
Description: 2 is the sum of squares of two nonnegative integers iff the two integers are 1. (Contributed by AV, 19-Jun-2023.)
Assertion
Ref Expression
2sq2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))

Proof of Theorem 2sq2
StepHypRef Expression
1 nn0sqcl 14030 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
2 nn0sqcl 14030 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
32nn0red 12480 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
41, 3anim12ci 614 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
54adantr 480 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
6 nn0addge2 12465 . . . . 5 (((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
75, 6syl 17 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
8 breq2 5106 . . . . . 6 (((𝐴↑2) + (𝐵↑2)) = 2 → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
98adantl 481 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
102ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ∈ ℕ0)
11 nn0le2is012 12574 . . . . . . . 8 (((𝐵↑2) ∈ ℕ0 ∧ (𝐵↑2) ≤ 2) → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2))
1211ex 412 . . . . . . 7 ((𝐵↑2) ∈ ℕ0 → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
1310, 12syl 17 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
14 oveq2 7377 . . . . . . . . . . 11 ((𝐵↑2) = 0 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 0))
1514eqeq1d 2731 . . . . . . . . . 10 ((𝐵↑2) = 0 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
1615adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
171nn0cnd 12481 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℂ)
1817addridd 11350 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐴↑2) + 0) = (𝐴↑2))
1918adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) + 0) = (𝐴↑2))
2019eqeq1d 2731 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 ↔ (𝐴↑2) = 2))
211nn0red 12480 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℝ)
22 nn0re 12427 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2322sqge0d 14078 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ (𝐴↑2))
24 2nn0 12435 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → 2 ∈ ℕ0)
2625nn0red 12480 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℝ)
27 0le2 12264 . . . . . . . . . . . . . . 15 0 ≤ 2
2827a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 2)
29 sqrt11 15204 . . . . . . . . . . . . . 14 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
3021, 23, 26, 28, 29syl22anc 838 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
31 nn0ge0 12443 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
3222, 31sqrtsqd 15362 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → (√‘(𝐴↑2)) = 𝐴)
3332eqeq1d 2731 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ 𝐴 = (√‘2)))
34 sqrt2irr 16193 . . . . . . . . . . . . . . 15 (√‘2) ∉ ℚ
35 df-nel 3030 . . . . . . . . . . . . . . . 16 ((√‘2) ∉ ℚ ↔ ¬ (√‘2) ∈ ℚ)
36 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((√‘2) = 𝐴 → (√‘2) = 𝐴)
3736eqcoms 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (√‘2) → (√‘2) = 𝐴)
3837eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐴 ∈ ℚ))
3938notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (√‘2) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
4039adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
41 nn0z 12530 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
42 zq 12889 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
4443pm2.24d 151 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0 → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4544adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4640, 45sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4746com12 32 . . . . . . . . . . . . . . . . 17 (¬ (√‘2) ∈ ℚ → ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
4847expd 415 . . . . . . . . . . . . . . . 16 (¬ (√‘2) ∈ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
4935, 48sylbi 217 . . . . . . . . . . . . . . 15 ((√‘2) ∉ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
5034, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5133, 50sylbid 240 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5230, 51sylbird 260 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5352adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5420, 53sylbid 240 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5554adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5616, 55sylbid 240 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5756impancom 451 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 0 → (𝐴 = 1 ∧ 𝐵 = 1)))
58 oveq2 7377 . . . . . . . . . . 11 ((𝐵↑2) = 1 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 1))
5958eqeq1d 2731 . . . . . . . . . 10 ((𝐵↑2) = 1 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 1) = 2))
60 2cnd 12240 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℂ)
61 1cnd 11145 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 1 ∈ ℂ)
6260, 61, 173jca 1128 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
6362adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
64 subadd2 11401 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6563, 64syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6665bicomd 223 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 1) = 2 ↔ (2 − 1) = (𝐴↑2)))
6759, 66sylan9bbr 510 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (2 − 1) = (𝐴↑2)))
68 nn0sqeq1 15218 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0 ∧ (𝐵↑2) = 1) → 𝐵 = 1)
6968ex 412 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 1 → 𝐵 = 1))
7069adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → 𝐵 = 1))
71 2m1e1 12283 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 − 1) = 1)
7372eqeq1d 2731 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ 1 = (𝐴↑2)))
74 eqcom 2736 . . . . . . . . . . . . . 14 (1 = (𝐴↑2) ↔ (𝐴↑2) = 1)
7573, 74bitrdi 287 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ (𝐴↑2) = 1))
76 nn0sqeq1 15218 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐴↑2) = 1) → 𝐴 = 1)
7776ex 412 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 1 → 𝐴 = 1))
7877adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → 𝐴 = 1))
79 id 22 . . . . . . . . . . . . . . 15 ((𝐴 = 1 ∧ 𝐵 = 1) → (𝐴 = 1 ∧ 𝐵 = 1))
8079ex 412 . . . . . . . . . . . . . 14 (𝐴 = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
8178, 80syl6 35 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8275, 81sylbid 240 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8382com23 86 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐵 = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8470, 83syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8584imp 406 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1)))
8667, 85sylbid 240 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
8786impancom 451 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
88 nn0re 12427 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
89 nn0ge0 12443 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
9088, 89sqrtsqd 15362 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (√‘(𝐵↑2)) = 𝐵)
9190eqcomd 2735 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
9291eqeq1d 2731 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (√‘(𝐵↑2)) = (√‘2)))
9388sqge0d 14078 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
94 2re 12236 . . . . . . . . . . . 12 2 ∈ ℝ
9594a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 2 ∈ ℝ)
9627a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ 2)
97 sqrt11 15204 . . . . . . . . . . 11 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
983, 93, 95, 96, 97syl22anc 838 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
9992, 98bitrd 279 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (𝐵↑2) = 2))
100 id 22 . . . . . . . . . . . . . . . . . 18 ((√‘2) = 𝐵 → (√‘2) = 𝐵)
101100eqcoms 2737 . . . . . . . . . . . . . . . . 17 (𝐵 = (√‘2) → (√‘2) = 𝐵)
102101eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝐵 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
103102adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
104103notbid 318 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐵 ∈ ℚ))
105 nn0z 12530 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
106 zq 12889 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
107105, 106syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0𝐵 ∈ ℚ)
108107pm2.24d 151 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
109108adantr 480 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
110104, 109sylbid 240 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
111110com12 32 . . . . . . . . . . . 12 (¬ (√‘2) ∈ ℚ → ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
112111expd 415 . . . . . . . . . . 11 (¬ (√‘2) ∈ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11335, 112sylbi 217 . . . . . . . . . 10 ((√‘2) ∉ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11434, 113ax-mp 5 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11599, 114sylbird 260 . . . . . . . 8 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
116115ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
11757, 87, 1163jaod 1431 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11813, 117syld 47 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
1199, 118sylbid 240 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
1207, 119mpd 15 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐴 = 1 ∧ 𝐵 = 1))
121120ex 412 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
122 oveq1 7376 . . . . 5 (𝐴 = 1 → (𝐴↑2) = (1↑2))
123 sq1 14136 . . . . 5 (1↑2) = 1
124122, 123eqtrdi 2780 . . . 4 (𝐴 = 1 → (𝐴↑2) = 1)
125 oveq1 7376 . . . . 5 (𝐵 = 1 → (𝐵↑2) = (1↑2))
126125, 123eqtrdi 2780 . . . 4 (𝐵 = 1 → (𝐵↑2) = 1)
127124, 126oveqan12d 7388 . . 3 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = (1 + 1))
128 1p1e2 12282 . . 3 (1 + 1) = 2
129127, 128eqtrdi 2780 . 2 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = 2)
130121, 129impbid1 225 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wnel 3029   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  cle 11185  cmin 11381  2c2 12217  0cn0 12418  cz 12505  cq 12883  cexp 14002  csqrt 15175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  2sqreultblem  27335  2sqreunnltblem  27338
  Copyright terms: Public domain W3C validator