MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq2 Structured version   Visualization version   GIF version

Theorem 2sq2 26009
Description: 2 is the sum of squares of two nonnegative integers iff the two integers are 1. (Contributed by AV, 19-Jun-2023.)
Assertion
Ref Expression
2sq2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))

Proof of Theorem 2sq2
StepHypRef Expression
1 nn0sqcl 13457 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
2 nn0sqcl 13457 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
32nn0red 11957 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
41, 3anim12ci 615 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
54adantr 483 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
6 nn0addge2 11945 . . . . 5 (((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
75, 6syl 17 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
8 breq2 5070 . . . . . 6 (((𝐴↑2) + (𝐵↑2)) = 2 → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
98adantl 484 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
102ad2antlr 725 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ∈ ℕ0)
11 nn0le2is012 12047 . . . . . . . 8 (((𝐵↑2) ∈ ℕ0 ∧ (𝐵↑2) ≤ 2) → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2))
1211ex 415 . . . . . . 7 ((𝐵↑2) ∈ ℕ0 → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
1310, 12syl 17 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
14 oveq2 7164 . . . . . . . . . . 11 ((𝐵↑2) = 0 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 0))
1514eqeq1d 2823 . . . . . . . . . 10 ((𝐵↑2) = 0 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
1615adantl 484 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
171nn0cnd 11958 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℂ)
1817addid1d 10840 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐴↑2) + 0) = (𝐴↑2))
1918adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) + 0) = (𝐴↑2))
2019eqeq1d 2823 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 ↔ (𝐴↑2) = 2))
211nn0red 11957 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℝ)
22 nn0re 11907 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2322sqge0d 13613 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ (𝐴↑2))
24 2nn0 11915 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → 2 ∈ ℕ0)
2625nn0red 11957 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℝ)
27 0le2 11740 . . . . . . . . . . . . . . 15 0 ≤ 2
2827a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 2)
29 sqrt11 14622 . . . . . . . . . . . . . 14 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
3021, 23, 26, 28, 29syl22anc 836 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
31 nn0ge0 11923 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
3222, 31sqrtsqd 14779 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → (√‘(𝐴↑2)) = 𝐴)
3332eqeq1d 2823 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ 𝐴 = (√‘2)))
34 sqrt2irr 15602 . . . . . . . . . . . . . . 15 (√‘2) ∉ ℚ
35 df-nel 3124 . . . . . . . . . . . . . . . 16 ((√‘2) ∉ ℚ ↔ ¬ (√‘2) ∈ ℚ)
36 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((√‘2) = 𝐴 → (√‘2) = 𝐴)
3736eqcoms 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (√‘2) → (√‘2) = 𝐴)
3837eleq1d 2897 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐴 ∈ ℚ))
3938notbid 320 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (√‘2) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
4039adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
41 nn0z 12006 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
42 zq 12355 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
4443pm2.24d 154 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0 → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4544adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4640, 45sylbid 242 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4746com12 32 . . . . . . . . . . . . . . . . 17 (¬ (√‘2) ∈ ℚ → ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
4847expd 418 . . . . . . . . . . . . . . . 16 (¬ (√‘2) ∈ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
4935, 48sylbi 219 . . . . . . . . . . . . . . 15 ((√‘2) ∉ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
5034, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5133, 50sylbid 242 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5230, 51sylbird 262 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5352adantr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5420, 53sylbid 242 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5554adantr 483 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5616, 55sylbid 242 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5756impancom 454 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 0 → (𝐴 = 1 ∧ 𝐵 = 1)))
58 oveq2 7164 . . . . . . . . . . 11 ((𝐵↑2) = 1 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 1))
5958eqeq1d 2823 . . . . . . . . . 10 ((𝐵↑2) = 1 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 1) = 2))
60 2cnd 11716 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℂ)
61 1cnd 10636 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 1 ∈ ℂ)
6260, 61, 173jca 1124 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
6362adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
64 subadd2 10890 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6563, 64syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6665bicomd 225 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 1) = 2 ↔ (2 − 1) = (𝐴↑2)))
6759, 66sylan9bbr 513 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (2 − 1) = (𝐴↑2)))
68 nn0sqeq1 14636 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0 ∧ (𝐵↑2) = 1) → 𝐵 = 1)
6968ex 415 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 1 → 𝐵 = 1))
7069adantl 484 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → 𝐵 = 1))
71 2m1e1 11764 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 − 1) = 1)
7372eqeq1d 2823 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ 1 = (𝐴↑2)))
74 eqcom 2828 . . . . . . . . . . . . . 14 (1 = (𝐴↑2) ↔ (𝐴↑2) = 1)
7573, 74syl6bb 289 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ (𝐴↑2) = 1))
76 nn0sqeq1 14636 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐴↑2) = 1) → 𝐴 = 1)
7776ex 415 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 1 → 𝐴 = 1))
7877adantr 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → 𝐴 = 1))
79 id 22 . . . . . . . . . . . . . . 15 ((𝐴 = 1 ∧ 𝐵 = 1) → (𝐴 = 1 ∧ 𝐵 = 1))
8079ex 415 . . . . . . . . . . . . . 14 (𝐴 = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
8178, 80syl6 35 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8275, 81sylbid 242 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8382com23 86 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐵 = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8470, 83syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8584imp 409 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1)))
8667, 85sylbid 242 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
8786impancom 454 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
88 nn0re 11907 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
89 nn0ge0 11923 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
9088, 89sqrtsqd 14779 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (√‘(𝐵↑2)) = 𝐵)
9190eqcomd 2827 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
9291eqeq1d 2823 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (√‘(𝐵↑2)) = (√‘2)))
9388sqge0d 13613 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
94 2re 11712 . . . . . . . . . . . 12 2 ∈ ℝ
9594a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 2 ∈ ℝ)
9627a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ 2)
97 sqrt11 14622 . . . . . . . . . . 11 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
983, 93, 95, 96, 97syl22anc 836 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
9992, 98bitrd 281 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (𝐵↑2) = 2))
100 id 22 . . . . . . . . . . . . . . . . . 18 ((√‘2) = 𝐵 → (√‘2) = 𝐵)
101100eqcoms 2829 . . . . . . . . . . . . . . . . 17 (𝐵 = (√‘2) → (√‘2) = 𝐵)
102101eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝐵 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
103102adantl 484 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
104103notbid 320 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐵 ∈ ℚ))
105 nn0z 12006 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
106 zq 12355 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
107105, 106syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0𝐵 ∈ ℚ)
108107pm2.24d 154 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
109108adantr 483 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
110104, 109sylbid 242 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
111110com12 32 . . . . . . . . . . . 12 (¬ (√‘2) ∈ ℚ → ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
112111expd 418 . . . . . . . . . . 11 (¬ (√‘2) ∈ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11335, 112sylbi 219 . . . . . . . . . 10 ((√‘2) ∉ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11434, 113ax-mp 5 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11599, 114sylbird 262 . . . . . . . 8 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
116115ad2antlr 725 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
11757, 87, 1163jaod 1424 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11813, 117syld 47 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
1199, 118sylbid 242 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
1207, 119mpd 15 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐴 = 1 ∧ 𝐵 = 1))
121120ex 415 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
122 oveq1 7163 . . . . 5 (𝐴 = 1 → (𝐴↑2) = (1↑2))
123 sq1 13559 . . . . 5 (1↑2) = 1
124122, 123syl6eq 2872 . . . 4 (𝐴 = 1 → (𝐴↑2) = 1)
125 oveq1 7163 . . . . 5 (𝐵 = 1 → (𝐵↑2) = (1↑2))
126125, 123syl6eq 2872 . . . 4 (𝐵 = 1 → (𝐵↑2) = 1)
127124, 126oveqan12d 7175 . . 3 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = (1 + 1))
128 1p1e2 11763 . . 3 (1 + 1) = 2
129127, 128syl6eq 2872 . 2 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = 2)
130121, 129impbid1 227 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wnel 3123   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  cle 10676  cmin 10870  2c2 11693  0cn0 11898  cz 11982  cq 12349  cexp 13430  csqrt 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595
This theorem is referenced by:  2sqreultblem  26024  2sqreunnltblem  26027
  Copyright terms: Public domain W3C validator