Proof of Theorem 2sq2
Step | Hyp | Ref
| Expression |
1 | | nn0sqcl 13738 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0
→ (𝐴↑2) ∈
ℕ0) |
2 | | nn0sqcl 13738 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ (𝐵↑2) ∈
ℕ0) |
3 | 2 | nn0red 12224 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
→ (𝐵↑2) ∈
ℝ) |
4 | 1, 3 | anim12ci 613 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈
ℕ0)) |
5 | 4 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈
ℕ0)) |
6 | | nn0addge2 12210 |
. . . . 5
⊢ (((𝐵↑2) ∈ ℝ ∧
(𝐴↑2) ∈
ℕ0) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2))) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2))) |
8 | | breq2 5074 |
. . . . . 6
⊢ (((𝐴↑2) + (𝐵↑2)) = 2 → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2)) |
9 | 8 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2)) |
10 | 2 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ∈
ℕ0) |
11 | | nn0le2is012 12314 |
. . . . . . . 8
⊢ (((𝐵↑2) ∈
ℕ0 ∧ (𝐵↑2) ≤ 2) → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)) |
12 | 11 | ex 412 |
. . . . . . 7
⊢ ((𝐵↑2) ∈
ℕ0 → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2))) |
13 | 10, 12 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2))) |
14 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ ((𝐵↑2) = 0 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 0)) |
15 | 14 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝐵↑2) = 0 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2)) |
16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2)) |
17 | 1 | nn0cnd 12225 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ (𝐴↑2) ∈
ℂ) |
18 | 17 | addid1d 11105 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ ((𝐴↑2) + 0) =
(𝐴↑2)) |
19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴↑2) + 0) = (𝐴↑2)) |
20 | 19 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (((𝐴↑2) + 0) = 2 ↔ (𝐴↑2) = 2)) |
21 | 1 | nn0red 12224 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ (𝐴↑2) ∈
ℝ) |
22 | | nn0re 12172 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
23 | 22 | sqge0d 13894 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ (𝐴↑2)) |
24 | | 2nn0 12180 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ0 |
25 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ 2 ∈ ℕ0) |
26 | 25 | nn0red 12224 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 2 ∈ ℝ) |
27 | | 0le2 12005 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
2 |
28 | 27 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 2) |
29 | | sqrt11 14902 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴↑2) ∈ ℝ ∧ 0
≤ (𝐴↑2)) ∧ (2
∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2)) |
30 | 21, 23, 26, 28, 29 | syl22anc 835 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2)) |
31 | | nn0ge0 12188 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
32 | 22, 31 | sqrtsqd 15059 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ (√‘(𝐴↑2)) = 𝐴) |
33 | 32 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ ((√‘(𝐴↑2)) = (√‘2) ↔ 𝐴 =
(√‘2))) |
34 | | sqrt2irr 15886 |
. . . . . . . . . . . . . . 15
⊢
(√‘2) ∉ ℚ |
35 | | df-nel 3049 |
. . . . . . . . . . . . . . . 16
⊢
((√‘2) ∉ ℚ ↔ ¬ (√‘2) ∈
ℚ) |
36 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((√‘2) = 𝐴 → (√‘2) = 𝐴) |
37 | 36 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 = (√‘2) →
(√‘2) = 𝐴) |
38 | 37 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 = (√‘2) →
((√‘2) ∈ ℚ ↔ 𝐴 ∈ ℚ)) |
39 | 38 | notbid 317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 = (√‘2) →
(¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ)) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ0
∧ 𝐴 =
(√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬
𝐴 ∈
ℚ)) |
41 | | nn0z 12273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
42 | | zq 12623 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℚ) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℚ) |
44 | 43 | pm2.24d 151 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℕ0
→ (¬ 𝐴 ∈
ℚ → (𝐴 = 1 ∧
𝐵 = 1))) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ0
∧ 𝐴 =
(√‘2)) → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1))) |
46 | 40, 45 | sylbid 239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ0
∧ 𝐴 =
(√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1))) |
47 | 46 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(√‘2) ∈ ℚ → ((𝐴 ∈ ℕ0 ∧ 𝐴 = (√‘2)) →
(𝐴 = 1 ∧ 𝐵 = 1))) |
48 | 47 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(√‘2) ∈ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) →
(𝐴 = 1 ∧ 𝐵 = 1)))) |
49 | 35, 48 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢
((√‘2) ∉ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) →
(𝐴 = 1 ∧ 𝐵 = 1)))) |
50 | 34, 49 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ (𝐴 =
(√‘2) → (𝐴
= 1 ∧ 𝐵 =
1))) |
51 | 33, 50 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ ((√‘(𝐴↑2)) = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))) |
52 | 30, 51 | sylbird 259 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ ((𝐴↑2) = 2
→ (𝐴 = 1 ∧ 𝐵 = 1))) |
53 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
54 | 20, 53 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
55 | 54 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
56 | 16, 55 | sylbid 239 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
57 | 56 | impancom 451 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 0 → (𝐴 = 1 ∧ 𝐵 = 1))) |
58 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ ((𝐵↑2) = 1 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 1)) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝐵↑2) = 1 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 1) = 2)) |
60 | | 2cnd 11981 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 2 ∈ ℂ) |
61 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 1 ∈ ℂ) |
62 | 60, 61, 17 | 3jca 1126 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ)) |
63 | 62 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧
(𝐴↑2) ∈
ℂ)) |
64 | | subadd2 11155 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((2 −
1) = (𝐴↑2) ↔
((𝐴↑2) + 1) =
2)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2)) |
66 | 65 | bicomd 222 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (((𝐴↑2) + 1) = 2 ↔ (2 − 1) =
(𝐴↑2))) |
67 | 59, 66 | sylan9bbr 510 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (2 − 1) = (𝐴↑2))) |
68 | | nn0sqeq1 14916 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ0
∧ (𝐵↑2) = 1)
→ 𝐵 =
1) |
69 | 68 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ0
→ ((𝐵↑2) = 1
→ 𝐵 =
1)) |
70 | 69 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐵↑2) = 1 → 𝐵 = 1)) |
71 | | 2m1e1 12029 |
. . . . . . . . . . . . . . . 16
⊢ (2
− 1) = 1 |
72 | 71 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (2 − 1) = 1) |
73 | 72 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((2 − 1) = (𝐴↑2) ↔ 1 = (𝐴↑2))) |
74 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (1 =
(𝐴↑2) ↔ (𝐴↑2) = 1) |
75 | 73, 74 | bitrdi 286 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((2 − 1) = (𝐴↑2) ↔ (𝐴↑2) = 1)) |
76 | | nn0sqeq1 14916 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ0
∧ (𝐴↑2) = 1)
→ 𝐴 =
1) |
77 | 76 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ ((𝐴↑2) = 1
→ 𝐴 =
1)) |
78 | 77 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴↑2) = 1 → 𝐴 = 1)) |
79 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 = 1 ∧ 𝐵 = 1) → (𝐴 = 1 ∧ 𝐵 = 1)) |
80 | 79 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))) |
81 | 78, 80 | syl6 35 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴↑2) = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))) |
82 | 75, 81 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((2 − 1) = (𝐴↑2) → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))) |
83 | 82 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐵 = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1)))) |
84 | 70, 83 | syld 47 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐵↑2) = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1)))) |
85 | 84 | imp 406 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ (𝐵↑2) = 1) → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))) |
86 | 67, 85 | sylbid 239 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
87 | 86 | impancom 451 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 1 → (𝐴 = 1 ∧ 𝐵 = 1))) |
88 | | nn0re 12172 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℝ) |
89 | | nn0ge0 12188 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ 𝐵) |
90 | 88, 89 | sqrtsqd 15059 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ0
→ (√‘(𝐵↑2)) = 𝐵) |
91 | 90 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ0
→ 𝐵 =
(√‘(𝐵↑2))) |
92 | 91 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ0
→ (𝐵 =
(√‘2) ↔ (√‘(𝐵↑2)) =
(√‘2))) |
93 | 88 | sqge0d 13894 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ (𝐵↑2)) |
94 | | 2re 11977 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
95 | 94 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ0
→ 2 ∈ ℝ) |
96 | 27 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ 2) |
97 | | sqrt11 14902 |
. . . . . . . . . . 11
⊢ ((((𝐵↑2) ∈ ℝ ∧ 0
≤ (𝐵↑2)) ∧ (2
∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2)) |
98 | 3, 93, 95, 96, 97 | syl22anc 835 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ0
→ ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2)) |
99 | 92, 98 | bitrd 278 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
→ (𝐵 =
(√‘2) ↔ (𝐵↑2) = 2)) |
100 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢
((√‘2) = 𝐵 → (√‘2) = 𝐵) |
101 | 100 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = (√‘2) →
(√‘2) = 𝐵) |
102 | 101 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = (√‘2) →
((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ)) |
103 | 102 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ ℕ0
∧ 𝐵 =
(√‘2)) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈
ℚ)) |
104 | 103 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ0
∧ 𝐵 =
(√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬
𝐵 ∈
ℚ)) |
105 | | nn0z 12273 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℤ) |
106 | | zq 12623 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℚ) |
107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℚ) |
108 | 107 | pm2.24d 151 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ0
→ (¬ 𝐵 ∈
ℚ → (𝐴 = 1 ∧
𝐵 = 1))) |
109 | 108 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ0
∧ 𝐵 =
(√‘2)) → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1))) |
110 | 104, 109 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ0
∧ 𝐵 =
(√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1))) |
111 | 110 | com12 32 |
. . . . . . . . . . . 12
⊢ (¬
(√‘2) ∈ ℚ → ((𝐵 ∈ ℕ0 ∧ 𝐵 = (√‘2)) →
(𝐴 = 1 ∧ 𝐵 = 1))) |
112 | 111 | expd 415 |
. . . . . . . . . . 11
⊢ (¬
(√‘2) ∈ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) →
(𝐴 = 1 ∧ 𝐵 = 1)))) |
113 | 35, 112 | sylbi 216 |
. . . . . . . . . 10
⊢
((√‘2) ∉ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) →
(𝐴 = 1 ∧ 𝐵 = 1)))) |
114 | 34, 113 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
→ (𝐵 =
(√‘2) → (𝐴
= 1 ∧ 𝐵 =
1))) |
115 | 99, 114 | sylbird 259 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ ((𝐵↑2) = 2
→ (𝐴 = 1 ∧ 𝐵 = 1))) |
116 | 115 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
117 | 57, 87, 116 | 3jaod 1426 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2) → (𝐴 = 1 ∧ 𝐵 = 1))) |
118 | 13, 117 | syld 47 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
119 | 9, 118 | sylbid 239 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) → (𝐴 = 1 ∧ 𝐵 = 1))) |
120 | 7, 119 | mpd 15 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐴 = 1 ∧ 𝐵 = 1)) |
121 | 120 | ex 412 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1))) |
122 | | oveq1 7262 |
. . . . 5
⊢ (𝐴 = 1 → (𝐴↑2) = (1↑2)) |
123 | | sq1 13840 |
. . . . 5
⊢
(1↑2) = 1 |
124 | 122, 123 | eqtrdi 2795 |
. . . 4
⊢ (𝐴 = 1 → (𝐴↑2) = 1) |
125 | | oveq1 7262 |
. . . . 5
⊢ (𝐵 = 1 → (𝐵↑2) = (1↑2)) |
126 | 125, 123 | eqtrdi 2795 |
. . . 4
⊢ (𝐵 = 1 → (𝐵↑2) = 1) |
127 | 124, 126 | oveqan12d 7274 |
. . 3
⊢ ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = (1 + 1)) |
128 | | 1p1e2 12028 |
. . 3
⊢ (1 + 1) =
2 |
129 | 127, 128 | eqtrdi 2795 |
. 2
⊢ ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = 2) |
130 | 121, 129 | impbid1 224 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1))) |