MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq2 Structured version   Visualization version   GIF version

Theorem 2sq2 27411
Description: 2 is the sum of squares of two nonnegative integers iff the two integers are 1. (Contributed by AV, 19-Jun-2023.)
Assertion
Ref Expression
2sq2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))

Proof of Theorem 2sq2
StepHypRef Expression
1 nn0sqcl 14090 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
2 nn0sqcl 14090 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
32nn0red 12566 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
41, 3anim12ci 612 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
54adantr 479 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
6 nn0addge2 12552 . . . . 5 (((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
75, 6syl 17 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
8 breq2 5153 . . . . . 6 (((𝐴↑2) + (𝐵↑2)) = 2 → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
98adantl 480 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
102ad2antlr 725 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ∈ ℕ0)
11 nn0le2is012 12659 . . . . . . . 8 (((𝐵↑2) ∈ ℕ0 ∧ (𝐵↑2) ≤ 2) → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2))
1211ex 411 . . . . . . 7 ((𝐵↑2) ∈ ℕ0 → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
1310, 12syl 17 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
14 oveq2 7427 . . . . . . . . . . 11 ((𝐵↑2) = 0 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 0))
1514eqeq1d 2727 . . . . . . . . . 10 ((𝐵↑2) = 0 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
1615adantl 480 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
171nn0cnd 12567 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℂ)
1817addridd 11446 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐴↑2) + 0) = (𝐴↑2))
1918adantr 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) + 0) = (𝐴↑2))
2019eqeq1d 2727 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 ↔ (𝐴↑2) = 2))
211nn0red 12566 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℝ)
22 nn0re 12514 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2322sqge0d 14137 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ (𝐴↑2))
24 2nn0 12522 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → 2 ∈ ℕ0)
2625nn0red 12566 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℝ)
27 0le2 12347 . . . . . . . . . . . . . . 15 0 ≤ 2
2827a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 2)
29 sqrt11 15245 . . . . . . . . . . . . . 14 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
3021, 23, 26, 28, 29syl22anc 837 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
31 nn0ge0 12530 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
3222, 31sqrtsqd 15402 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → (√‘(𝐴↑2)) = 𝐴)
3332eqeq1d 2727 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ 𝐴 = (√‘2)))
34 sqrt2irr 16229 . . . . . . . . . . . . . . 15 (√‘2) ∉ ℚ
35 df-nel 3036 . . . . . . . . . . . . . . . 16 ((√‘2) ∉ ℚ ↔ ¬ (√‘2) ∈ ℚ)
36 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((√‘2) = 𝐴 → (√‘2) = 𝐴)
3736eqcoms 2733 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (√‘2) → (√‘2) = 𝐴)
3837eleq1d 2810 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐴 ∈ ℚ))
3938notbid 317 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (√‘2) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
4039adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
41 nn0z 12616 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
42 zq 12971 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
4443pm2.24d 151 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0 → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4544adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4640, 45sylbid 239 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4746com12 32 . . . . . . . . . . . . . . . . 17 (¬ (√‘2) ∈ ℚ → ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
4847expd 414 . . . . . . . . . . . . . . . 16 (¬ (√‘2) ∈ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
4935, 48sylbi 216 . . . . . . . . . . . . . . 15 ((√‘2) ∉ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
5034, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5133, 50sylbid 239 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5230, 51sylbird 259 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5352adantr 479 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5420, 53sylbid 239 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5554adantr 479 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5616, 55sylbid 239 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5756impancom 450 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 0 → (𝐴 = 1 ∧ 𝐵 = 1)))
58 oveq2 7427 . . . . . . . . . . 11 ((𝐵↑2) = 1 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 1))
5958eqeq1d 2727 . . . . . . . . . 10 ((𝐵↑2) = 1 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 1) = 2))
60 2cnd 12323 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℂ)
61 1cnd 11241 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 1 ∈ ℂ)
6260, 61, 173jca 1125 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
6362adantr 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
64 subadd2 11496 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6563, 64syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6665bicomd 222 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 1) = 2 ↔ (2 − 1) = (𝐴↑2)))
6759, 66sylan9bbr 509 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (2 − 1) = (𝐴↑2)))
68 nn0sqeq1 15259 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0 ∧ (𝐵↑2) = 1) → 𝐵 = 1)
6968ex 411 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 1 → 𝐵 = 1))
7069adantl 480 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → 𝐵 = 1))
71 2m1e1 12371 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 − 1) = 1)
7372eqeq1d 2727 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ 1 = (𝐴↑2)))
74 eqcom 2732 . . . . . . . . . . . . . 14 (1 = (𝐴↑2) ↔ (𝐴↑2) = 1)
7573, 74bitrdi 286 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ (𝐴↑2) = 1))
76 nn0sqeq1 15259 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐴↑2) = 1) → 𝐴 = 1)
7776ex 411 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 1 → 𝐴 = 1))
7877adantr 479 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → 𝐴 = 1))
79 id 22 . . . . . . . . . . . . . . 15 ((𝐴 = 1 ∧ 𝐵 = 1) → (𝐴 = 1 ∧ 𝐵 = 1))
8079ex 411 . . . . . . . . . . . . . 14 (𝐴 = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
8178, 80syl6 35 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8275, 81sylbid 239 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8382com23 86 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐵 = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8470, 83syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8584imp 405 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1)))
8667, 85sylbid 239 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
8786impancom 450 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
88 nn0re 12514 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
89 nn0ge0 12530 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
9088, 89sqrtsqd 15402 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (√‘(𝐵↑2)) = 𝐵)
9190eqcomd 2731 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
9291eqeq1d 2727 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (√‘(𝐵↑2)) = (√‘2)))
9388sqge0d 14137 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
94 2re 12319 . . . . . . . . . . . 12 2 ∈ ℝ
9594a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 2 ∈ ℝ)
9627a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ 2)
97 sqrt11 15245 . . . . . . . . . . 11 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
983, 93, 95, 96, 97syl22anc 837 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
9992, 98bitrd 278 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (𝐵↑2) = 2))
100 id 22 . . . . . . . . . . . . . . . . . 18 ((√‘2) = 𝐵 → (√‘2) = 𝐵)
101100eqcoms 2733 . . . . . . . . . . . . . . . . 17 (𝐵 = (√‘2) → (√‘2) = 𝐵)
102101eleq1d 2810 . . . . . . . . . . . . . . . 16 (𝐵 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
103102adantl 480 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
104103notbid 317 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐵 ∈ ℚ))
105 nn0z 12616 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
106 zq 12971 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
107105, 106syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0𝐵 ∈ ℚ)
108107pm2.24d 151 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
109108adantr 479 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
110104, 109sylbid 239 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
111110com12 32 . . . . . . . . . . . 12 (¬ (√‘2) ∈ ℚ → ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
112111expd 414 . . . . . . . . . . 11 (¬ (√‘2) ∈ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11335, 112sylbi 216 . . . . . . . . . 10 ((√‘2) ∉ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11434, 113ax-mp 5 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11599, 114sylbird 259 . . . . . . . 8 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
116115ad2antlr 725 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
11757, 87, 1163jaod 1425 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11813, 117syld 47 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
1199, 118sylbid 239 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
1207, 119mpd 15 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐴 = 1 ∧ 𝐵 = 1))
121120ex 411 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
122 oveq1 7426 . . . . 5 (𝐴 = 1 → (𝐴↑2) = (1↑2))
123 sq1 14194 . . . . 5 (1↑2) = 1
124122, 123eqtrdi 2781 . . . 4 (𝐴 = 1 → (𝐴↑2) = 1)
125 oveq1 7426 . . . . 5 (𝐵 = 1 → (𝐵↑2) = (1↑2))
126125, 123eqtrdi 2781 . . . 4 (𝐵 = 1 → (𝐵↑2) = 1)
127124, 126oveqan12d 7438 . . 3 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = (1 + 1))
128 1p1e2 12370 . . 3 (1 + 1) = 2
129127, 128eqtrdi 2781 . 2 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = 2)
130121, 129impbid1 224 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wnel 3035   class class class wbr 5149  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143  cle 11281  cmin 11476  2c2 12300  0cn0 12505  cz 12591  cq 12965  cexp 14062  csqrt 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219
This theorem is referenced by:  2sqreultblem  27426  2sqreunnltblem  27429
  Copyright terms: Public domain W3C validator