Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq2 Structured version   Visualization version   GIF version

Theorem 2sq2 26031
 Description: 2 is the sum of squares of two nonnegative integers iff the two integers are 1. (Contributed by AV, 19-Jun-2023.)
Assertion
Ref Expression
2sq2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))

Proof of Theorem 2sq2
StepHypRef Expression
1 nn0sqcl 13459 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
2 nn0sqcl 13459 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
32nn0red 11951 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
41, 3anim12ci 616 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
54adantr 484 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0))
6 nn0addge2 11939 . . . . 5 (((𝐵↑2) ∈ ℝ ∧ (𝐴↑2) ∈ ℕ0) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
75, 6syl 17 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)))
8 breq2 5035 . . . . . 6 (((𝐴↑2) + (𝐵↑2)) = 2 → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
98adantl 485 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) ↔ (𝐵↑2) ≤ 2))
102ad2antlr 726 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐵↑2) ∈ ℕ0)
11 nn0le2is012 12041 . . . . . . . 8 (((𝐵↑2) ∈ ℕ0 ∧ (𝐵↑2) ≤ 2) → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2))
1211ex 416 . . . . . . 7 ((𝐵↑2) ∈ ℕ0 → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
1310, 12syl 17 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → ((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2)))
14 oveq2 7148 . . . . . . . . . . 11 ((𝐵↑2) = 0 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 0))
1514eqeq1d 2800 . . . . . . . . . 10 ((𝐵↑2) = 0 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
1615adantl 485 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 0) = 2))
171nn0cnd 11952 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℂ)
1817addid1d 10836 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐴↑2) + 0) = (𝐴↑2))
1918adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) + 0) = (𝐴↑2))
2019eqeq1d 2800 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 ↔ (𝐴↑2) = 2))
211nn0red 11951 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℝ)
22 nn0re 11901 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2322sqge0d 13615 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ (𝐴↑2))
24 2nn0 11909 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → 2 ∈ ℕ0)
2625nn0red 11951 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℝ)
27 0le2 11734 . . . . . . . . . . . . . . 15 0 ≤ 2
2827a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 2)
29 sqrt11 14621 . . . . . . . . . . . . . 14 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
3021, 23, 26, 28, 29syl22anc 837 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ (𝐴↑2) = 2))
31 nn0ge0 11917 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
3222, 31sqrtsqd 14778 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → (√‘(𝐴↑2)) = 𝐴)
3332eqeq1d 2800 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) ↔ 𝐴 = (√‘2)))
34 sqrt2irr 15601 . . . . . . . . . . . . . . 15 (√‘2) ∉ ℚ
35 df-nel 3092 . . . . . . . . . . . . . . . 16 ((√‘2) ∉ ℚ ↔ ¬ (√‘2) ∈ ℚ)
36 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((√‘2) = 𝐴 → (√‘2) = 𝐴)
3736eqcoms 2806 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (√‘2) → (√‘2) = 𝐴)
3837eleq1d 2874 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐴 ∈ ℚ))
3938notbid 321 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (√‘2) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
4039adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ))
41 nn0z 12000 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
42 zq 12349 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
4443pm2.24d 154 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0 → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4544adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ 𝐴 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4640, 45sylbid 243 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
4746com12 32 . . . . . . . . . . . . . . . . 17 (¬ (√‘2) ∈ ℚ → ((𝐴 ∈ ℕ0𝐴 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
4847expd 419 . . . . . . . . . . . . . . . 16 (¬ (√‘2) ∈ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
4935, 48sylbi 220 . . . . . . . . . . . . . . 15 ((√‘2) ∉ ℚ → (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
5034, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → (𝐴 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5133, 50sylbid 243 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((√‘(𝐴↑2)) = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
5230, 51sylbird 263 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5352adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5420, 53sylbid 243 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5554adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + 0) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5616, 55sylbid 243 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
5756impancom 455 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 0 → (𝐴 = 1 ∧ 𝐵 = 1)))
58 oveq2 7148 . . . . . . . . . . 11 ((𝐵↑2) = 1 → ((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + 1))
5958eqeq1d 2800 . . . . . . . . . 10 ((𝐵↑2) = 1 → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ ((𝐴↑2) + 1) = 2))
60 2cnd 11710 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 2 ∈ ℂ)
61 1cnd 10632 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 1 ∈ ℂ)
6260, 61, 173jca 1125 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
6362adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ))
64 subadd2 10886 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6563, 64syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ ((𝐴↑2) + 1) = 2))
6665bicomd 226 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + 1) = 2 ↔ (2 − 1) = (𝐴↑2)))
6759, 66sylan9bbr 514 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (2 − 1) = (𝐴↑2)))
68 nn0sqeq1 14635 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0 ∧ (𝐵↑2) = 1) → 𝐵 = 1)
6968ex 416 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 1 → 𝐵 = 1))
7069adantl 485 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → 𝐵 = 1))
71 2m1e1 11758 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (2 − 1) = 1)
7372eqeq1d 2800 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ 1 = (𝐴↑2)))
74 eqcom 2805 . . . . . . . . . . . . . 14 (1 = (𝐴↑2) ↔ (𝐴↑2) = 1)
7573, 74syl6bb 290 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) ↔ (𝐴↑2) = 1))
76 nn0sqeq1 14635 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐴↑2) = 1) → 𝐴 = 1)
7776ex 416 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0 → ((𝐴↑2) = 1 → 𝐴 = 1))
7877adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → 𝐴 = 1))
79 id 22 . . . . . . . . . . . . . . 15 ((𝐴 = 1 ∧ 𝐵 = 1) → (𝐴 = 1 ∧ 𝐵 = 1))
8079ex 416 . . . . . . . . . . . . . 14 (𝐴 = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
8178, 80syl6 35 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴↑2) = 1 → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8275, 81sylbid 243 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((2 − 1) = (𝐴↑2) → (𝐵 = 1 → (𝐴 = 1 ∧ 𝐵 = 1))))
8382com23 86 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐵 = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8470, 83syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵↑2) = 1 → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1))))
8584imp 410 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → ((2 − 1) = (𝐴↑2) → (𝐴 = 1 ∧ 𝐵 = 1)))
8667, 85sylbid 243 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐵↑2) = 1) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
8786impancom 455 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 1 → (𝐴 = 1 ∧ 𝐵 = 1)))
88 nn0re 11901 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
89 nn0ge0 11917 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
9088, 89sqrtsqd 14778 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (√‘(𝐵↑2)) = 𝐵)
9190eqcomd 2804 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
9291eqeq1d 2800 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (√‘(𝐵↑2)) = (√‘2)))
9388sqge0d 13615 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
94 2re 11706 . . . . . . . . . . . 12 2 ∈ ℝ
9594a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 2 ∈ ℝ)
9627a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 → 0 ≤ 2)
97 sqrt11 14621 . . . . . . . . . . 11 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
983, 93, 95, 96, 97syl22anc 837 . . . . . . . . . 10 (𝐵 ∈ ℕ0 → ((√‘(𝐵↑2)) = (√‘2) ↔ (𝐵↑2) = 2))
9992, 98bitrd 282 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) ↔ (𝐵↑2) = 2))
100 id 22 . . . . . . . . . . . . . . . . . 18 ((√‘2) = 𝐵 → (√‘2) = 𝐵)
101100eqcoms 2806 . . . . . . . . . . . . . . . . 17 (𝐵 = (√‘2) → (√‘2) = 𝐵)
102101eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝐵 = (√‘2) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
103102adantl 485 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → ((√‘2) ∈ ℚ ↔ 𝐵 ∈ ℚ))
104103notbid 321 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ ↔ ¬ 𝐵 ∈ ℚ))
105 nn0z 12000 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
106 zq 12349 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
107105, 106syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0𝐵 ∈ ℚ)
108107pm2.24d 154 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
109108adantr 484 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ 𝐵 ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
110104, 109sylbid 243 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (¬ (√‘2) ∈ ℚ → (𝐴 = 1 ∧ 𝐵 = 1)))
111110com12 32 . . . . . . . . . . . 12 (¬ (√‘2) ∈ ℚ → ((𝐵 ∈ ℕ0𝐵 = (√‘2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
112111expd 419 . . . . . . . . . . 11 (¬ (√‘2) ∈ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11335, 112sylbi 220 . . . . . . . . . 10 ((√‘2) ∉ ℚ → (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1))))
11434, 113ax-mp 5 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 = (√‘2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11599, 114sylbird 263 . . . . . . . 8 (𝐵 ∈ ℕ0 → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
116115ad2antlr 726 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
11757, 87, 1163jaod 1425 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (((𝐵↑2) = 0 ∨ (𝐵↑2) = 1 ∨ (𝐵↑2) = 2) → (𝐴 = 1 ∧ 𝐵 = 1)))
11813, 117syld 47 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
1199, 118sylbid 243 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → ((𝐵↑2) ≤ ((𝐴↑2) + (𝐵↑2)) → (𝐴 = 1 ∧ 𝐵 = 1)))
1207, 119mpd 15 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) + (𝐵↑2)) = 2) → (𝐴 = 1 ∧ 𝐵 = 1))
121120ex 416 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 → (𝐴 = 1 ∧ 𝐵 = 1)))
122 oveq1 7147 . . . . 5 (𝐴 = 1 → (𝐴↑2) = (1↑2))
123 sq1 13561 . . . . 5 (1↑2) = 1
124122, 123eqtrdi 2849 . . . 4 (𝐴 = 1 → (𝐴↑2) = 1)
125 oveq1 7147 . . . . 5 (𝐵 = 1 → (𝐵↑2) = (1↑2))
126125, 123eqtrdi 2849 . . . 4 (𝐵 = 1 → (𝐵↑2) = 1)
127124, 126oveqan12d 7159 . . 3 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = (1 + 1))
128 1p1e2 11757 . . 3 (1 + 1) = 2
129127, 128eqtrdi 2849 . 2 ((𝐴 = 1 ∧ 𝐵 = 1) → ((𝐴↑2) + (𝐵↑2)) = 2)
130121, 129impbid1 228 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ∉ wnel 3091   class class class wbr 5031  ‘cfv 6327  (class class class)co 7140  ℂcc 10531  ℝcr 10532  0cc0 10533  1c1 10534   + caddc 10536   ≤ cle 10672   − cmin 10866  2c2 11687  ℕ0cn0 11892  ℤcz 11976  ℚcq 12343  ↑cexp 13432  √csqrt 14591 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-pre-sup 10611 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-sup 8897  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-div 11294  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-q 12344  df-rp 12385  df-seq 13372  df-exp 13433  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594 This theorem is referenced by:  2sqreultblem  26046  2sqreunnltblem  26049
 Copyright terms: Public domain W3C validator