MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqnn0 Structured version   Visualization version   GIF version

Theorem 2sqnn0 26930
Description: All primes of the form 4𝑘 + 1 are sums of squares of two nonnegative integers. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
2sqnn0 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable group:   𝑥,𝑃,𝑦

Proof of Theorem 2sqnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq 26922 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2 elnn0z 12567 . . . . . . . . 9 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℤ ∧ 0 ≤ 𝑎))
32biimpri 227 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℕ0)
4 elznn0 12569 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
5 nn0ge0 12493 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
65pm2.24d 151 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
76a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
8 ax-1 6 . . . . . . . . . . . . 13 (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
98a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
107, 9jaod 857 . . . . . . . . . . 11 (𝑎 ∈ ℝ → ((𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
1110imp 407 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
124, 11sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
1312imp 407 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ ¬ 0 ≤ 𝑎) → -𝑎 ∈ ℕ0)
143, 13ifclda 4562 . . . . . . 7 (𝑎 ∈ ℤ → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1514adantr 481 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1615adantr 481 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
17 elnn0z 12567 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
1817biimpri 227 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → 𝑏 ∈ ℕ0)
19 elznn0 12569 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)))
20 nn0ge0 12493 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0 → 0 ≤ 𝑏)
2120pm2.24d 151 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2221a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
23 ax-1 6 . . . . . . . . . . . . 13 (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2423a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2522, 24jaod 857 . . . . . . . . . . 11 (𝑏 ∈ ℝ → ((𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2625imp 407 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2719, 26sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2827imp 407 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ¬ 0 ≤ 𝑏) → -𝑏 ∈ ℕ0)
2918, 28ifclda 4562 . . . . . . 7 (𝑏 ∈ ℤ → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3029adantl 482 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3130adantr 481 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
32 elznn0nn 12568 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)))
335iftrued 4535 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → if(0 ≤ 𝑎, 𝑎, -𝑎) = 𝑎)
3433eqcomd 2738 . . . . . . . . . . . 12 (𝑎 ∈ ℕ0𝑎 = if(0 ≤ 𝑎, 𝑎, -𝑎))
3534oveq1d 7420 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
36 elnnz 12564 . . . . . . . . . . . . . . . 16 (-𝑎 ∈ ℕ ↔ (-𝑎 ∈ ℤ ∧ 0 < -𝑎))
37 lt0neg1 11716 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ 0 < -𝑎))
38 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ)
39 0red 11213 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 0 ∈ ℝ)
4038, 39ltnled 11357 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ ¬ 0 ≤ 𝑎))
4140biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 → ¬ 0 ≤ 𝑎))
4237, 41sylbird 259 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → (0 < -𝑎 → ¬ 0 ≤ 𝑎))
4342com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑎 → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4436, 43simplbiim 505 . . . . . . . . . . . . . . 15 (-𝑎 ∈ ℕ → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4544impcom 408 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → ¬ 0 ≤ 𝑎)
4645iffalsed 4538 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → if(0 ≤ 𝑎, 𝑎, -𝑎) = -𝑎)
4746oveq1d 7420 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) = (-𝑎↑2))
48 recn 11196 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
49 sqneg 14077 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (-𝑎↑2) = (𝑎↑2))
5150adantr 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (-𝑎↑2) = (𝑎↑2))
5247, 51eqtr2d 2773 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5335, 52jaoi 855 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5432, 53sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
55 elznn0nn 12568 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)))
5620iftrued 4535 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → if(0 ≤ 𝑏, 𝑏, -𝑏) = 𝑏)
5756eqcomd 2738 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 = if(0 ≤ 𝑏, 𝑏, -𝑏))
5857oveq1d 7420 . . . . . . . . . . 11 (𝑏 ∈ ℕ0 → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
59 elnnz 12564 . . . . . . . . . . . . . . . 16 (-𝑏 ∈ ℕ ↔ (-𝑏 ∈ ℤ ∧ 0 < -𝑏))
60 lt0neg1 11716 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ 0 < -𝑏))
61 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ)
62 0red 11213 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 0 ∈ ℝ)
6361, 62ltnled 11357 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ ¬ 0 ≤ 𝑏))
6463biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 → ¬ 0 ≤ 𝑏))
6560, 64sylbird 259 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → (0 < -𝑏 → ¬ 0 ≤ 𝑏))
6665com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑏 → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6759, 66simplbiim 505 . . . . . . . . . . . . . . 15 (-𝑏 ∈ ℕ → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6867impcom 408 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → ¬ 0 ≤ 𝑏)
6968iffalsed 4538 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → if(0 ≤ 𝑏, 𝑏, -𝑏) = -𝑏)
7069oveq1d 7420 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2) = (-𝑏↑2))
71 recn 11196 . . . . . . . . . . . . . 14 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
72 sqneg 14077 . . . . . . . . . . . . . 14 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
7371, 72syl 17 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (-𝑏↑2) = (𝑏↑2))
7473adantr 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (-𝑏↑2) = (𝑏↑2))
7570, 74eqtr2d 2773 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7658, 75jaoi 855 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7755, 76sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7854, 77oveqan12d 7424 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎↑2) + (𝑏↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
7978eqeq2d 2743 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8079biimpd 228 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8180imp 407 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
82 oveq1 7412 . . . . . . . 8 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑥↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
8382oveq1d 7420 . . . . . . 7 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → ((𝑥↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)))
8483eqeq2d 2743 . . . . . 6 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2))))
85 oveq1 7412 . . . . . . . 8 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑦↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
8685oveq2d 7421 . . . . . . 7 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
8786eqeq2d 2743 . . . . . 6 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8884, 87rspc2ev 3623 . . . . 5 ((if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0 ∧ if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
8916, 31, 81, 88syl3anc 1371 . . . 4 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
9089ex 413 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2))))
9190rexlimivv 3199 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
921, 91syl 17 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  ifcif 4527   class class class wbr 5147  (class class class)co 7405  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cle 11245  -cneg 11441  cn 12208  2c2 12263  4c4 12265  0cn0 12468  cz 12554   mod cmo 13830  cexp 14023  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-phi 16695  df-pc 16766  df-gz 16859  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-imas 17450  df-qus 17451  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-nzr 20284  df-drng 20309  df-field 20310  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-2idl 20849  df-rlreg 20891  df-domn 20892  df-idom 20893  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-zn 21047  df-assa 21399  df-asp 21400  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-evls 21626  df-evl 21627  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-evl1 21826  df-mdeg 25561  df-deg1 25562  df-mon1 25639  df-uc1p 25640  df-q1p 25641  df-r1p 25642  df-lgs 26787
This theorem is referenced by:  2sqnn  26931  2sqreulem1  26938
  Copyright terms: Public domain W3C validator