MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqnn0 Structured version   Visualization version   GIF version

Theorem 2sqnn0 27482
Description: All primes of the form 4𝑘 + 1 are sums of squares of two nonnegative integers. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
2sqnn0 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable group:   𝑥,𝑃,𝑦

Proof of Theorem 2sqnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq 27474 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2 elnn0z 12626 . . . . . . . . 9 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℤ ∧ 0 ≤ 𝑎))
32biimpri 228 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℕ0)
4 elznn0 12628 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
5 nn0ge0 12551 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
65pm2.24d 151 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
76a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
8 ax-1 6 . . . . . . . . . . . . 13 (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
98a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
107, 9jaod 860 . . . . . . . . . . 11 (𝑎 ∈ ℝ → ((𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
1110imp 406 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
124, 11sylbi 217 . . . . . . . . 9 (𝑎 ∈ ℤ → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
1312imp 406 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ ¬ 0 ≤ 𝑎) → -𝑎 ∈ ℕ0)
143, 13ifclda 4561 . . . . . . 7 (𝑎 ∈ ℤ → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1514adantr 480 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1615adantr 480 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
17 elnn0z 12626 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
1817biimpri 228 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → 𝑏 ∈ ℕ0)
19 elznn0 12628 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)))
20 nn0ge0 12551 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0 → 0 ≤ 𝑏)
2120pm2.24d 151 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2221a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
23 ax-1 6 . . . . . . . . . . . . 13 (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2423a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2522, 24jaod 860 . . . . . . . . . . 11 (𝑏 ∈ ℝ → ((𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2625imp 406 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2719, 26sylbi 217 . . . . . . . . 9 (𝑏 ∈ ℤ → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2827imp 406 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ¬ 0 ≤ 𝑏) → -𝑏 ∈ ℕ0)
2918, 28ifclda 4561 . . . . . . 7 (𝑏 ∈ ℤ → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3029adantl 481 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3130adantr 480 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
32 elznn0nn 12627 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)))
335iftrued 4533 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → if(0 ≤ 𝑎, 𝑎, -𝑎) = 𝑎)
3433eqcomd 2743 . . . . . . . . . . . 12 (𝑎 ∈ ℕ0𝑎 = if(0 ≤ 𝑎, 𝑎, -𝑎))
3534oveq1d 7446 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
36 elnnz 12623 . . . . . . . . . . . . . . . 16 (-𝑎 ∈ ℕ ↔ (-𝑎 ∈ ℤ ∧ 0 < -𝑎))
37 lt0neg1 11769 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ 0 < -𝑎))
38 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ)
39 0red 11264 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 0 ∈ ℝ)
4038, 39ltnled 11408 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ ¬ 0 ≤ 𝑎))
4140biimpd 229 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 → ¬ 0 ≤ 𝑎))
4237, 41sylbird 260 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → (0 < -𝑎 → ¬ 0 ≤ 𝑎))
4342com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑎 → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4436, 43simplbiim 504 . . . . . . . . . . . . . . 15 (-𝑎 ∈ ℕ → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4544impcom 407 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → ¬ 0 ≤ 𝑎)
4645iffalsed 4536 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → if(0 ≤ 𝑎, 𝑎, -𝑎) = -𝑎)
4746oveq1d 7446 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) = (-𝑎↑2))
48 recn 11245 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
49 sqneg 14156 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (-𝑎↑2) = (𝑎↑2))
5150adantr 480 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (-𝑎↑2) = (𝑎↑2))
5247, 51eqtr2d 2778 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5335, 52jaoi 858 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5432, 53sylbi 217 . . . . . . . . 9 (𝑎 ∈ ℤ → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
55 elznn0nn 12627 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)))
5620iftrued 4533 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → if(0 ≤ 𝑏, 𝑏, -𝑏) = 𝑏)
5756eqcomd 2743 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 = if(0 ≤ 𝑏, 𝑏, -𝑏))
5857oveq1d 7446 . . . . . . . . . . 11 (𝑏 ∈ ℕ0 → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
59 elnnz 12623 . . . . . . . . . . . . . . . 16 (-𝑏 ∈ ℕ ↔ (-𝑏 ∈ ℤ ∧ 0 < -𝑏))
60 lt0neg1 11769 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ 0 < -𝑏))
61 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ)
62 0red 11264 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 0 ∈ ℝ)
6361, 62ltnled 11408 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ ¬ 0 ≤ 𝑏))
6463biimpd 229 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 → ¬ 0 ≤ 𝑏))
6560, 64sylbird 260 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → (0 < -𝑏 → ¬ 0 ≤ 𝑏))
6665com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑏 → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6759, 66simplbiim 504 . . . . . . . . . . . . . . 15 (-𝑏 ∈ ℕ → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6867impcom 407 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → ¬ 0 ≤ 𝑏)
6968iffalsed 4536 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → if(0 ≤ 𝑏, 𝑏, -𝑏) = -𝑏)
7069oveq1d 7446 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2) = (-𝑏↑2))
71 recn 11245 . . . . . . . . . . . . . 14 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
72 sqneg 14156 . . . . . . . . . . . . . 14 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
7371, 72syl 17 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (-𝑏↑2) = (𝑏↑2))
7473adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (-𝑏↑2) = (𝑏↑2))
7570, 74eqtr2d 2778 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7658, 75jaoi 858 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7755, 76sylbi 217 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7854, 77oveqan12d 7450 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎↑2) + (𝑏↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
7978eqeq2d 2748 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8079biimpd 229 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8180imp 406 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
82 oveq1 7438 . . . . . . . 8 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑥↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
8382oveq1d 7446 . . . . . . 7 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → ((𝑥↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)))
8483eqeq2d 2748 . . . . . 6 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2))))
85 oveq1 7438 . . . . . . . 8 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑦↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
8685oveq2d 7447 . . . . . . 7 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
8786eqeq2d 2748 . . . . . 6 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8884, 87rspc2ev 3635 . . . . 5 ((if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0 ∧ if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
8916, 31, 81, 88syl3anc 1373 . . . 4 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
9089ex 412 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2))))
9190rexlimivv 3201 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
921, 91syl 17 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wrex 3070  ifcif 4525   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  -cneg 11493  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cz 12613   mod cmo 13909  cexp 14102  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-phi 16803  df-pc 16875  df-gz 16968  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-imas 17553  df-qus 17554  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-mon1 26170  df-uc1p 26171  df-q1p 26172  df-r1p 26173  df-lgs 27339
This theorem is referenced by:  2sqnn  27483  2sqreulem1  27490
  Copyright terms: Public domain W3C validator