MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqnn0 Structured version   Visualization version   GIF version

Theorem 2sqnn0 26586
Description: All primes of the form 4𝑘 + 1 are sums of squares of two nonnegative integers. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
2sqnn0 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable group:   𝑥,𝑃,𝑦

Proof of Theorem 2sqnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq 26578 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2 elnn0z 12332 . . . . . . . . 9 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℤ ∧ 0 ≤ 𝑎))
32biimpri 227 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℕ0)
4 elznn0 12334 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
5 nn0ge0 12258 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
65pm2.24d 151 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
76a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
8 ax-1 6 . . . . . . . . . . . . 13 (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
98a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
107, 9jaod 856 . . . . . . . . . . 11 (𝑎 ∈ ℝ → ((𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
1110imp 407 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
124, 11sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
1312imp 407 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ ¬ 0 ≤ 𝑎) → -𝑎 ∈ ℕ0)
143, 13ifclda 4494 . . . . . . 7 (𝑎 ∈ ℤ → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1514adantr 481 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1615adantr 481 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
17 elnn0z 12332 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
1817biimpri 227 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → 𝑏 ∈ ℕ0)
19 elznn0 12334 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)))
20 nn0ge0 12258 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0 → 0 ≤ 𝑏)
2120pm2.24d 151 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2221a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
23 ax-1 6 . . . . . . . . . . . . 13 (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2423a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2522, 24jaod 856 . . . . . . . . . . 11 (𝑏 ∈ ℝ → ((𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2625imp 407 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2719, 26sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2827imp 407 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ¬ 0 ≤ 𝑏) → -𝑏 ∈ ℕ0)
2918, 28ifclda 4494 . . . . . . 7 (𝑏 ∈ ℤ → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3029adantl 482 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3130adantr 481 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
32 elznn0nn 12333 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)))
335iftrued 4467 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → if(0 ≤ 𝑎, 𝑎, -𝑎) = 𝑎)
3433eqcomd 2744 . . . . . . . . . . . 12 (𝑎 ∈ ℕ0𝑎 = if(0 ≤ 𝑎, 𝑎, -𝑎))
3534oveq1d 7290 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
36 elnnz 12329 . . . . . . . . . . . . . . . 16 (-𝑎 ∈ ℕ ↔ (-𝑎 ∈ ℤ ∧ 0 < -𝑎))
37 lt0neg1 11481 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ 0 < -𝑎))
38 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ)
39 0red 10978 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 0 ∈ ℝ)
4038, 39ltnled 11122 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ ¬ 0 ≤ 𝑎))
4140biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 → ¬ 0 ≤ 𝑎))
4237, 41sylbird 259 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → (0 < -𝑎 → ¬ 0 ≤ 𝑎))
4342com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑎 → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4436, 43simplbiim 505 . . . . . . . . . . . . . . 15 (-𝑎 ∈ ℕ → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4544impcom 408 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → ¬ 0 ≤ 𝑎)
4645iffalsed 4470 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → if(0 ≤ 𝑎, 𝑎, -𝑎) = -𝑎)
4746oveq1d 7290 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) = (-𝑎↑2))
48 recn 10961 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
49 sqneg 13836 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (-𝑎↑2) = (𝑎↑2))
5150adantr 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (-𝑎↑2) = (𝑎↑2))
5247, 51eqtr2d 2779 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5335, 52jaoi 854 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5432, 53sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
55 elznn0nn 12333 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)))
5620iftrued 4467 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → if(0 ≤ 𝑏, 𝑏, -𝑏) = 𝑏)
5756eqcomd 2744 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 = if(0 ≤ 𝑏, 𝑏, -𝑏))
5857oveq1d 7290 . . . . . . . . . . 11 (𝑏 ∈ ℕ0 → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
59 elnnz 12329 . . . . . . . . . . . . . . . 16 (-𝑏 ∈ ℕ ↔ (-𝑏 ∈ ℤ ∧ 0 < -𝑏))
60 lt0neg1 11481 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ 0 < -𝑏))
61 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ)
62 0red 10978 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 0 ∈ ℝ)
6361, 62ltnled 11122 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ ¬ 0 ≤ 𝑏))
6463biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 → ¬ 0 ≤ 𝑏))
6560, 64sylbird 259 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → (0 < -𝑏 → ¬ 0 ≤ 𝑏))
6665com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑏 → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6759, 66simplbiim 505 . . . . . . . . . . . . . . 15 (-𝑏 ∈ ℕ → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6867impcom 408 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → ¬ 0 ≤ 𝑏)
6968iffalsed 4470 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → if(0 ≤ 𝑏, 𝑏, -𝑏) = -𝑏)
7069oveq1d 7290 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2) = (-𝑏↑2))
71 recn 10961 . . . . . . . . . . . . . 14 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
72 sqneg 13836 . . . . . . . . . . . . . 14 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
7371, 72syl 17 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (-𝑏↑2) = (𝑏↑2))
7473adantr 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (-𝑏↑2) = (𝑏↑2))
7570, 74eqtr2d 2779 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7658, 75jaoi 854 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7755, 76sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7854, 77oveqan12d 7294 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎↑2) + (𝑏↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
7978eqeq2d 2749 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8079biimpd 228 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8180imp 407 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
82 oveq1 7282 . . . . . . . 8 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑥↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
8382oveq1d 7290 . . . . . . 7 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → ((𝑥↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)))
8483eqeq2d 2749 . . . . . 6 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2))))
85 oveq1 7282 . . . . . . . 8 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑦↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
8685oveq2d 7291 . . . . . . 7 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
8786eqeq2d 2749 . . . . . 6 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8884, 87rspc2ev 3572 . . . . 5 ((if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0 ∧ if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
8916, 31, 81, 88syl3anc 1370 . . . 4 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
9089ex 413 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2))))
9190rexlimivv 3221 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
921, 91syl 17 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wrex 3065  ifcif 4459   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  -cneg 11206  cn 11973  2c2 12028  4c4 12030  0cn0 12233  cz 12319   mod cmo 13589  cexp 13782  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-pc 16538  df-gz 16631  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-imas 17219  df-qus 17220  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-nzr 20529  df-rlreg 20554  df-domn 20555  df-idom 20556  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-assa 21060  df-asp 21061  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-evls 21282  df-evl 21283  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-evl1 21482  df-mdeg 25217  df-deg1 25218  df-mon1 25295  df-uc1p 25296  df-q1p 25297  df-r1p 25298  df-lgs 26443
This theorem is referenced by:  2sqnn  26587  2sqreulem1  26594
  Copyright terms: Public domain W3C validator