MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqnn0 Structured version   Visualization version   GIF version

Theorem 2sqnn0 26802
Description: All primes of the form 4𝑘 + 1 are sums of squares of two nonnegative integers. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
2sqnn0 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable group:   𝑥,𝑃,𝑦

Proof of Theorem 2sqnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq 26794 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2 elnn0z 12519 . . . . . . . . 9 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℤ ∧ 0 ≤ 𝑎))
32biimpri 227 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℕ0)
4 elznn0 12521 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
5 nn0ge0 12445 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
65pm2.24d 151 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
76a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
8 ax-1 6 . . . . . . . . . . . . 13 (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
98a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
107, 9jaod 858 . . . . . . . . . . 11 (𝑎 ∈ ℝ → ((𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
1110imp 408 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
124, 11sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
1312imp 408 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ ¬ 0 ≤ 𝑎) → -𝑎 ∈ ℕ0)
143, 13ifclda 4526 . . . . . . 7 (𝑎 ∈ ℤ → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1514adantr 482 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1615adantr 482 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
17 elnn0z 12519 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
1817biimpri 227 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → 𝑏 ∈ ℕ0)
19 elznn0 12521 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)))
20 nn0ge0 12445 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0 → 0 ≤ 𝑏)
2120pm2.24d 151 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2221a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
23 ax-1 6 . . . . . . . . . . . . 13 (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2423a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2522, 24jaod 858 . . . . . . . . . . 11 (𝑏 ∈ ℝ → ((𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2625imp 408 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2719, 26sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2827imp 408 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ¬ 0 ≤ 𝑏) → -𝑏 ∈ ℕ0)
2918, 28ifclda 4526 . . . . . . 7 (𝑏 ∈ ℤ → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3029adantl 483 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3130adantr 482 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
32 elznn0nn 12520 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)))
335iftrued 4499 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → if(0 ≤ 𝑎, 𝑎, -𝑎) = 𝑎)
3433eqcomd 2743 . . . . . . . . . . . 12 (𝑎 ∈ ℕ0𝑎 = if(0 ≤ 𝑎, 𝑎, -𝑎))
3534oveq1d 7377 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
36 elnnz 12516 . . . . . . . . . . . . . . . 16 (-𝑎 ∈ ℕ ↔ (-𝑎 ∈ ℤ ∧ 0 < -𝑎))
37 lt0neg1 11668 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ 0 < -𝑎))
38 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ)
39 0red 11165 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 0 ∈ ℝ)
4038, 39ltnled 11309 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ ¬ 0 ≤ 𝑎))
4140biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 → ¬ 0 ≤ 𝑎))
4237, 41sylbird 260 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → (0 < -𝑎 → ¬ 0 ≤ 𝑎))
4342com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑎 → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4436, 43simplbiim 506 . . . . . . . . . . . . . . 15 (-𝑎 ∈ ℕ → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4544impcom 409 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → ¬ 0 ≤ 𝑎)
4645iffalsed 4502 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → if(0 ≤ 𝑎, 𝑎, -𝑎) = -𝑎)
4746oveq1d 7377 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) = (-𝑎↑2))
48 recn 11148 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
49 sqneg 14028 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (-𝑎↑2) = (𝑎↑2))
5150adantr 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (-𝑎↑2) = (𝑎↑2))
5247, 51eqtr2d 2778 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5335, 52jaoi 856 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5432, 53sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
55 elznn0nn 12520 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)))
5620iftrued 4499 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → if(0 ≤ 𝑏, 𝑏, -𝑏) = 𝑏)
5756eqcomd 2743 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 = if(0 ≤ 𝑏, 𝑏, -𝑏))
5857oveq1d 7377 . . . . . . . . . . 11 (𝑏 ∈ ℕ0 → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
59 elnnz 12516 . . . . . . . . . . . . . . . 16 (-𝑏 ∈ ℕ ↔ (-𝑏 ∈ ℤ ∧ 0 < -𝑏))
60 lt0neg1 11668 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ 0 < -𝑏))
61 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ)
62 0red 11165 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 0 ∈ ℝ)
6361, 62ltnled 11309 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ ¬ 0 ≤ 𝑏))
6463biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 → ¬ 0 ≤ 𝑏))
6560, 64sylbird 260 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → (0 < -𝑏 → ¬ 0 ≤ 𝑏))
6665com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑏 → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6759, 66simplbiim 506 . . . . . . . . . . . . . . 15 (-𝑏 ∈ ℕ → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6867impcom 409 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → ¬ 0 ≤ 𝑏)
6968iffalsed 4502 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → if(0 ≤ 𝑏, 𝑏, -𝑏) = -𝑏)
7069oveq1d 7377 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2) = (-𝑏↑2))
71 recn 11148 . . . . . . . . . . . . . 14 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
72 sqneg 14028 . . . . . . . . . . . . . 14 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
7371, 72syl 17 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (-𝑏↑2) = (𝑏↑2))
7473adantr 482 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (-𝑏↑2) = (𝑏↑2))
7570, 74eqtr2d 2778 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7658, 75jaoi 856 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7755, 76sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7854, 77oveqan12d 7381 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎↑2) + (𝑏↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
7978eqeq2d 2748 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8079biimpd 228 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8180imp 408 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
82 oveq1 7369 . . . . . . . 8 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑥↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
8382oveq1d 7377 . . . . . . 7 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → ((𝑥↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)))
8483eqeq2d 2748 . . . . . 6 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2))))
85 oveq1 7369 . . . . . . . 8 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑦↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
8685oveq2d 7378 . . . . . . 7 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
8786eqeq2d 2748 . . . . . 6 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8884, 87rspc2ev 3595 . . . . 5 ((if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0 ∧ if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
8916, 31, 81, 88syl3anc 1372 . . . 4 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
9089ex 414 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2))))
9190rexlimivv 3197 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
921, 91syl 17 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wrex 3074  ifcif 4491   class class class wbr 5110  (class class class)co 7362  cc 11056  cr 11057  0cc0 11058  1c1 11059   + caddc 11061   < clt 11196  cle 11197  -cneg 11393  cn 12160  2c2 12215  4c4 12217  0cn0 12420  cz 12506   mod cmo 13781  cexp 13974  cprime 16554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-ofr 7623  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-ec 8657  df-qs 8661  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-xnn0 12493  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-dvds 16144  df-gcd 16382  df-prm 16555  df-phi 16645  df-pc 16716  df-gz 16809  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-0g 17330  df-gsum 17331  df-prds 17336  df-pws 17338  df-imas 17397  df-qus 17398  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-submnd 18609  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mulg 18880  df-subg 18932  df-nsg 18933  df-eqg 18934  df-ghm 19013  df-cntz 19104  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-srg 19925  df-ring 19973  df-cring 19974  df-oppr 20056  df-dvdsr 20077  df-unit 20078  df-invr 20108  df-dvr 20119  df-rnghom 20155  df-drng 20201  df-field 20202  df-subrg 20236  df-lmod 20340  df-lss 20409  df-lsp 20449  df-sra 20649  df-rgmod 20650  df-lidl 20651  df-rsp 20652  df-2idl 20718  df-nzr 20744  df-rlreg 20769  df-domn 20770  df-idom 20771  df-cnfld 20813  df-zring 20886  df-zrh 20920  df-zn 20923  df-assa 21275  df-asp 21276  df-ascl 21277  df-psr 21327  df-mvr 21328  df-mpl 21329  df-opsr 21331  df-evls 21498  df-evl 21499  df-psr1 21567  df-vr1 21568  df-ply1 21569  df-coe1 21570  df-evl1 21698  df-mdeg 25433  df-deg1 25434  df-mon1 25511  df-uc1p 25512  df-q1p 25513  df-r1p 25514  df-lgs 26659
This theorem is referenced by:  2sqnn  26803  2sqreulem1  26810
  Copyright terms: Public domain W3C validator