MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqnn0 Structured version   Visualization version   GIF version

Theorem 2sqnn0 26786
Description: All primes of the form 4𝑘 + 1 are sums of squares of two nonnegative integers. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
2sqnn0 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable group:   𝑥,𝑃,𝑦

Proof of Theorem 2sqnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sq 26778 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2 elnn0z 12512 . . . . . . . . 9 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℤ ∧ 0 ≤ 𝑎))
32biimpri 227 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 0 ≤ 𝑎) → 𝑎 ∈ ℕ0)
4 elznn0 12514 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
5 nn0ge0 12438 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ0 → 0 ≤ 𝑎)
65pm2.24d 151 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
76a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
8 ax-1 6 . . . . . . . . . . . . 13 (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
98a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (-𝑎 ∈ ℕ0 → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
107, 9jaod 857 . . . . . . . . . . 11 (𝑎 ∈ ℝ → ((𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0)))
1110imp 407 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)) → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
124, 11sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (¬ 0 ≤ 𝑎 → -𝑎 ∈ ℕ0))
1312imp 407 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ ¬ 0 ≤ 𝑎) → -𝑎 ∈ ℕ0)
143, 13ifclda 4521 . . . . . . 7 (𝑎 ∈ ℤ → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1514adantr 481 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
1615adantr 481 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0)
17 elnn0z 12512 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏))
1817biimpri 227 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → 𝑏 ∈ ℕ0)
19 elznn0 12514 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)))
20 nn0ge0 12438 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0 → 0 ≤ 𝑏)
2120pm2.24d 151 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2221a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
23 ax-1 6 . . . . . . . . . . . . 13 (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2423a1i 11 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (-𝑏 ∈ ℕ0 → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2522, 24jaod 857 . . . . . . . . . . 11 (𝑏 ∈ ℝ → ((𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0)))
2625imp 407 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)) → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2719, 26sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (¬ 0 ≤ 𝑏 → -𝑏 ∈ ℕ0))
2827imp 407 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ¬ 0 ≤ 𝑏) → -𝑏 ∈ ℕ0)
2918, 28ifclda 4521 . . . . . . 7 (𝑏 ∈ ℤ → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3029adantl 482 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
3130adantr 481 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0)
32 elznn0nn 12513 . . . . . . . . . 10 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)))
335iftrued 4494 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ0 → if(0 ≤ 𝑎, 𝑎, -𝑎) = 𝑎)
3433eqcomd 2742 . . . . . . . . . . . 12 (𝑎 ∈ ℕ0𝑎 = if(0 ≤ 𝑎, 𝑎, -𝑎))
3534oveq1d 7372 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
36 elnnz 12509 . . . . . . . . . . . . . . . 16 (-𝑎 ∈ ℕ ↔ (-𝑎 ∈ ℤ ∧ 0 < -𝑎))
37 lt0neg1 11661 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ 0 < -𝑎))
38 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ)
39 0red 11158 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ → 0 ∈ ℝ)
4038, 39ltnled 11302 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → (𝑎 < 0 ↔ ¬ 0 ≤ 𝑎))
4140biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → (𝑎 < 0 → ¬ 0 ≤ 𝑎))
4237, 41sylbird 259 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → (0 < -𝑎 → ¬ 0 ≤ 𝑎))
4342com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑎 → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4436, 43simplbiim 505 . . . . . . . . . . . . . . 15 (-𝑎 ∈ ℕ → (𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎))
4544impcom 408 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → ¬ 0 ≤ 𝑎)
4645iffalsed 4497 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → if(0 ≤ 𝑎, 𝑎, -𝑎) = -𝑎)
4746oveq1d 7372 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) = (-𝑎↑2))
48 recn 11141 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
49 sqneg 14021 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (-𝑎↑2) = (𝑎↑2))
5150adantr 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (-𝑎↑2) = (𝑎↑2))
5247, 51eqtr2d 2777 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5335, 52jaoi 855 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∨ (𝑎 ∈ ℝ ∧ -𝑎 ∈ ℕ)) → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
5432, 53sylbi 216 . . . . . . . . 9 (𝑎 ∈ ℤ → (𝑎↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
55 elznn0nn 12513 . . . . . . . . . 10 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)))
5620iftrued 4494 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0 → if(0 ≤ 𝑏, 𝑏, -𝑏) = 𝑏)
5756eqcomd 2742 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 = if(0 ≤ 𝑏, 𝑏, -𝑏))
5857oveq1d 7372 . . . . . . . . . . 11 (𝑏 ∈ ℕ0 → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
59 elnnz 12509 . . . . . . . . . . . . . . . 16 (-𝑏 ∈ ℕ ↔ (-𝑏 ∈ ℤ ∧ 0 < -𝑏))
60 lt0neg1 11661 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ 0 < -𝑏))
61 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ)
62 0red 11158 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℝ → 0 ∈ ℝ)
6361, 62ltnled 11302 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℝ → (𝑏 < 0 ↔ ¬ 0 ≤ 𝑏))
6463biimpd 228 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ → (𝑏 < 0 → ¬ 0 ≤ 𝑏))
6560, 64sylbird 259 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → (0 < -𝑏 → ¬ 0 ≤ 𝑏))
6665com12 32 . . . . . . . . . . . . . . . 16 (0 < -𝑏 → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6759, 66simplbiim 505 . . . . . . . . . . . . . . 15 (-𝑏 ∈ ℕ → (𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏))
6867impcom 408 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → ¬ 0 ≤ 𝑏)
6968iffalsed 4497 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → if(0 ≤ 𝑏, 𝑏, -𝑏) = -𝑏)
7069oveq1d 7372 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2) = (-𝑏↑2))
71 recn 11141 . . . . . . . . . . . . . 14 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
72 sqneg 14021 . . . . . . . . . . . . . 14 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
7371, 72syl 17 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (-𝑏↑2) = (𝑏↑2))
7473adantr 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (-𝑏↑2) = (𝑏↑2))
7570, 74eqtr2d 2777 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7658, 75jaoi 855 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∨ (𝑏 ∈ ℝ ∧ -𝑏 ∈ ℕ)) → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7755, 76sylbi 216 . . . . . . . . 9 (𝑏 ∈ ℤ → (𝑏↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
7854, 77oveqan12d 7376 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎↑2) + (𝑏↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
7978eqeq2d 2747 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8079biimpd 228 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8180imp 407 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
82 oveq1 7364 . . . . . . . 8 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑥↑2) = (if(0 ≤ 𝑎, 𝑎, -𝑎)↑2))
8382oveq1d 7372 . . . . . . 7 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → ((𝑥↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)))
8483eqeq2d 2747 . . . . . 6 (𝑥 = if(0 ≤ 𝑎, 𝑎, -𝑎) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2))))
85 oveq1 7364 . . . . . . . 8 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑦↑2) = (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))
8685oveq2d 7373 . . . . . . 7 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2)))
8786eqeq2d 2747 . . . . . 6 (𝑦 = if(0 ≤ 𝑏, 𝑏, -𝑏) → (𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (𝑦↑2)) ↔ 𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))))
8884, 87rspc2ev 3592 . . . . 5 ((if(0 ≤ 𝑎, 𝑎, -𝑎) ∈ ℕ0 ∧ if(0 ≤ 𝑏, 𝑏, -𝑏) ∈ ℕ0𝑃 = ((if(0 ≤ 𝑎, 𝑎, -𝑎)↑2) + (if(0 ≤ 𝑏, 𝑏, -𝑏)↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
8916, 31, 81, 88syl3anc 1371 . . . 4 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
9089ex 413 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2))))
9190rexlimivv 3196 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
921, 91syl 17 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3073  ifcif 4486   class class class wbr 5105  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  -cneg 11386  cn 12153  2c2 12208  4c4 12210  0cn0 12413  cz 12499   mod cmo 13774  cexp 13967  cprime 16547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-phi 16638  df-pc 16709  df-gz 16802  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-imas 17390  df-qus 17391  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-nzr 20728  df-rlreg 20753  df-domn 20754  df-idom 20755  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-evls 21482  df-evl 21483  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-evl1 21682  df-mdeg 25417  df-deg1 25418  df-mon1 25495  df-uc1p 25496  df-q1p 25497  df-r1p 25498  df-lgs 26643
This theorem is referenced by:  2sqnn  26787  2sqreulem1  26794
  Copyright terms: Public domain W3C validator