MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcom3fi Structured version   Visualization version   GIF version

Theorem gsumcom3fi 19101
Description: A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
gsumcom3fi.b 𝐵 = (Base‘𝐺)
gsumcom3fi.g (𝜑𝐺 ∈ CMnd)
gsumcom3fi.a (𝜑𝐴 ∈ Fin)
gsumcom3fi.r (𝜑𝐶 ∈ Fin)
gsumcom3fi.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
Assertion
Ref Expression
gsumcom3fi (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴𝑋)))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑋(𝑗,𝑘)

Proof of Theorem gsumcom3fi
StepHypRef Expression
1 gsumcom3fi.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2823 . 2 (0g𝐺) = (0g𝐺)
3 gsumcom3fi.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsumcom3fi.a . 2 (𝜑𝐴 ∈ Fin)
5 gsumcom3fi.r . 2 (𝜑𝐶 ∈ Fin)
6 gsumcom3fi.f . 2 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
7 xpfi 8791 . . 3 ((𝐴 ∈ Fin ∧ 𝐶 ∈ Fin) → (𝐴 × 𝐶) ∈ Fin)
84, 5, 7syl2anc 586 . 2 (𝜑 → (𝐴 × 𝐶) ∈ Fin)
9 brxp 5603 . . . . . 6 (𝑗(𝐴 × 𝐶)𝑘 ↔ (𝑗𝐴𝑘𝐶))
109biimpri 230 . . . . 5 ((𝑗𝐴𝑘𝐶) → 𝑗(𝐴 × 𝐶)𝑘)
1110adantl 484 . . . 4 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑗(𝐴 × 𝐶)𝑘)
1211pm2.24d 154 . . 3 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ 𝑗(𝐴 × 𝐶)𝑘𝑋 = (0g𝐺)))
1312impr 457 . 2 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗(𝐴 × 𝐶)𝑘)) → 𝑋 = (0g𝐺))
141, 2, 3, 4, 5, 6, 8, 13gsumcom3 19100 1 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  cmpt 5148   × cxp 5555  cfv 6357  (class class class)co 7158  Fincfn 8511  Basecbs 16485  0gc0g 16715   Σg cgsu 16716  CMndccmn 18908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910
This theorem is referenced by:  mamuass  21013  mavmulass  21160  decpmatmul  21382
  Copyright terms: Public domain W3C validator