![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumcom3fi | Structured version Visualization version GIF version |
Description: A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
gsumcom3fi.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumcom3fi.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumcom3fi.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumcom3fi.r | ⊢ (𝜑 → 𝐶 ∈ Fin) |
gsumcom3fi.f | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsumcom3fi | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumcom3fi.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2732 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumcom3fi.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumcom3fi.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | gsumcom3fi.r | . 2 ⊢ (𝜑 → 𝐶 ∈ Fin) | |
6 | gsumcom3fi.f | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) | |
7 | xpfi 9316 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ∈ Fin) → (𝐴 × 𝐶) ∈ Fin) | |
8 | 4, 5, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ Fin) |
9 | brxp 5725 | . . . . . 6 ⊢ (𝑗(𝐴 × 𝐶)𝑘 ↔ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) | |
10 | 9 | biimpri 227 | . . . . 5 ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) → 𝑗(𝐴 × 𝐶)𝑘) |
11 | 10 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑗(𝐴 × 𝐶)𝑘) |
12 | 11 | pm2.24d 151 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 𝑗(𝐴 × 𝐶)𝑘 → 𝑋 = (0g‘𝐺))) |
13 | 12 | impr 455 | . 2 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗(𝐴 × 𝐶)𝑘)) → 𝑋 = (0g‘𝐺)) |
14 | 1, 2, 3, 4, 5, 6, 8, 13 | gsumcom3 19845 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ↦ cmpt 5231 × cxp 5674 ‘cfv 6543 (class class class)co 7408 Fincfn 8938 Basecbs 17143 0gc0g 17384 Σg cgsu 17385 CMndccmn 19647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-gsum 17387 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-mulg 18950 df-cntz 19180 df-cmn 19649 |
This theorem is referenced by: mamuass 21901 mavmulass 22050 decpmatmul 22273 |
Copyright terms: Public domain | W3C validator |