MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcom3fi Structured version   Visualization version   GIF version

Theorem gsumcom3fi 19941
Description: A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
gsumcom3fi.b 𝐵 = (Base‘𝐺)
gsumcom3fi.g (𝜑𝐺 ∈ CMnd)
gsumcom3fi.a (𝜑𝐴 ∈ Fin)
gsumcom3fi.r (𝜑𝐶 ∈ Fin)
gsumcom3fi.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
Assertion
Ref Expression
gsumcom3fi (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴𝑋)))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑋(𝑗,𝑘)

Proof of Theorem gsumcom3fi
StepHypRef Expression
1 gsumcom3fi.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2728 . 2 (0g𝐺) = (0g𝐺)
3 gsumcom3fi.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsumcom3fi.a . 2 (𝜑𝐴 ∈ Fin)
5 gsumcom3fi.r . 2 (𝜑𝐶 ∈ Fin)
6 gsumcom3fi.f . 2 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
7 xpfi 9349 . . 3 ((𝐴 ∈ Fin ∧ 𝐶 ∈ Fin) → (𝐴 × 𝐶) ∈ Fin)
84, 5, 7syl2anc 582 . 2 (𝜑 → (𝐴 × 𝐶) ∈ Fin)
9 brxp 5731 . . . . . 6 (𝑗(𝐴 × 𝐶)𝑘 ↔ (𝑗𝐴𝑘𝐶))
109biimpri 227 . . . . 5 ((𝑗𝐴𝑘𝐶) → 𝑗(𝐴 × 𝐶)𝑘)
1110adantl 480 . . . 4 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑗(𝐴 × 𝐶)𝑘)
1211pm2.24d 151 . . 3 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ 𝑗(𝐴 × 𝐶)𝑘𝑋 = (0g𝐺)))
1312impr 453 . 2 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗(𝐴 × 𝐶)𝑘)) → 𝑋 = (0g𝐺))
141, 2, 3, 4, 5, 6, 8, 13gsumcom3 19940 1 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶𝑋)))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5152  cmpt 5235   × cxp 5680  cfv 6553  (class class class)co 7426  Fincfn 8970  Basecbs 17187  0gc0g 17428   Σg cgsu 17429  CMndccmn 19742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-gsum 17431  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744
This theorem is referenced by:  mamuass  22322  mavmulass  22471  decpmatmul  22694
  Copyright terms: Public domain W3C validator