MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sizusglecusg Structured version   Visualization version   GIF version

Theorem sizusglecusg 29481
Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
sizusglecusg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))

Proof of Theorem sizusglecusg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
21fvexi 6920 . . . . . . . 8 𝐸 ∈ V
3 resiexg 7934 . . . . . . . 8 (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V)
42, 3mp1i 13 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V)
5 fusgrmaxsize.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
6 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
7 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
85, 1, 6, 7sizusglecusglem1 29479 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸1-1𝐹)
9 f1eq1 6799 . . . . . . 7 (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸1-1𝐹 ↔ ( I ↾ 𝐸):𝐸1-1𝐹))
104, 8, 9spcedv 3598 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸1-1𝐹)
1110adantl 481 . . . . 5 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸1-1𝐹)
12 hashdom 14418 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸𝐹))
1312adantr 480 . . . . . 6 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸𝐹))
14 brdomg 8997 . . . . . . . 8 (𝐹 ∈ Fin → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1514adantl 481 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1615adantr 480 . . . . . 6 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1713, 16bitrd 279 . . . . 5 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1811, 17mpbird 257 . . . 4 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹))
1918exp31 419 . . 3 (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))))
205, 1, 6, 7sizusglecusglem2 29480 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin)
2120pm2.24d 151 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))
22213expia 1122 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))))
2322com13 88 . . 3 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))))
2419, 23pm2.61i 182 . 2 (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))
257fvexi 6920 . . . 4 𝐹 ∈ V
26 nfile 14398 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹))
272, 25, 26mp3an12 1453 . . 3 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))
2827a1d 25 . 2 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))
2924, 28pm2.61i 182 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  Vcvv 3480   class class class wbr 5143   I cid 5577  cres 5687  1-1wf1 6558  cfv 6561  cdom 8983  Fincfn 8985  cle 11296  chash 14369  Vtxcvtx 29013  Edgcedg 29064  USGraphcusgr 29166  ComplUSGraphccusgr 29427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-vtx 29015  df-iedg 29016  df-edg 29065  df-uhgr 29075  df-upgr 29099  df-umgr 29100  df-uspgr 29167  df-usgr 29168  df-fusgr 29334  df-nbgr 29350  df-uvtx 29403  df-cplgr 29428  df-cusgr 29429
This theorem is referenced by:  fusgrmaxsize  29482
  Copyright terms: Public domain W3C validator