Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sizusglecusg | Structured version Visualization version GIF version |
Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
usgrsscusgra.h | ⊢ 𝑉 = (Vtx‘𝐻) |
usgrsscusgra.f | ⊢ 𝐹 = (Edg‘𝐻) |
Ref | Expression |
---|---|
sizusglecusg | ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | fvexi 6770 | . . . . . . . 8 ⊢ 𝐸 ∈ V |
3 | resiexg 7735 | . . . . . . . 8 ⊢ (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V) | |
4 | 2, 3 | mp1i 13 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V) |
5 | fusgrmaxsize.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | usgrsscusgra.h | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐻) | |
7 | usgrsscusgra.f | . . . . . . . 8 ⊢ 𝐹 = (Edg‘𝐻) | |
8 | 5, 1, 6, 7 | sizusglecusglem1 27731 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) |
9 | f1eq1 6649 | . . . . . . 7 ⊢ (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸–1-1→𝐹 ↔ ( I ↾ 𝐸):𝐸–1-1→𝐹)) | |
10 | 4, 8, 9 | spcedv 3527 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
12 | hashdom 14022 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) |
14 | brdomg 8703 | . . . . . . . 8 ⊢ (𝐹 ∈ Fin → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) | |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
17 | 13, 16 | bitrd 278 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
18 | 11, 17 | mpbird 256 | . . . 4 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹)) |
19 | 18 | exp31 419 | . . 3 ⊢ (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
20 | 5, 1, 6, 7 | sizusglecusglem2 27732 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
21 | 20 | pm2.24d 151 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))) |
22 | 21 | 3expia 1119 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))) |
23 | 22 | com13 88 | . . 3 ⊢ (¬ 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
24 | 19, 23 | pm2.61i 182 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
25 | 7 | fvexi 6770 | . . . 4 ⊢ 𝐹 ∈ V |
26 | nfile 14002 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹)) | |
27 | 2, 25, 26 | mp3an12 1449 | . . 3 ⊢ (¬ 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)) |
28 | 27 | a1d 25 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
29 | 24, 28 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 I cid 5479 ↾ cres 5582 –1-1→wf1 6415 ‘cfv 6418 ≼ cdom 8689 Fincfn 8691 ≤ cle 10941 ♯chash 13972 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-vtx 27271 df-iedg 27272 df-edg 27321 df-uhgr 27331 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-fusgr 27587 df-nbgr 27603 df-uvtx 27656 df-cplgr 27681 df-cusgr 27682 |
This theorem is referenced by: fusgrmaxsize 27734 |
Copyright terms: Public domain | W3C validator |