MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sizusglecusg Structured version   Visualization version   GIF version

Theorem sizusglecusg 29443
Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
sizusglecusg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))

Proof of Theorem sizusglecusg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
21fvexi 6890 . . . . . . . 8 𝐸 ∈ V
3 resiexg 7908 . . . . . . . 8 (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V)
42, 3mp1i 13 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V)
5 fusgrmaxsize.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
6 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
7 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
85, 1, 6, 7sizusglecusglem1 29441 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸1-1𝐹)
9 f1eq1 6769 . . . . . . 7 (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸1-1𝐹 ↔ ( I ↾ 𝐸):𝐸1-1𝐹))
104, 8, 9spcedv 3577 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸1-1𝐹)
1110adantl 481 . . . . 5 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸1-1𝐹)
12 hashdom 14397 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸𝐹))
1312adantr 480 . . . . . 6 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸𝐹))
14 brdomg 8971 . . . . . . . 8 (𝐹 ∈ Fin → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1514adantl 481 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1615adantr 480 . . . . . 6 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1713, 16bitrd 279 . . . . 5 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1811, 17mpbird 257 . . . 4 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹))
1918exp31 419 . . 3 (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))))
205, 1, 6, 7sizusglecusglem2 29442 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin)
2120pm2.24d 151 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))
22213expia 1121 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))))
2322com13 88 . . 3 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))))
2419, 23pm2.61i 182 . 2 (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))
257fvexi 6890 . . . 4 𝐹 ∈ V
26 nfile 14377 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹))
272, 25, 26mp3an12 1453 . . 3 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))
2827a1d 25 . 2 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))
2924, 28pm2.61i 182 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459   class class class wbr 5119   I cid 5547  cres 5656  1-1wf1 6528  cfv 6531  cdom 8957  Fincfn 8959  cle 11270  chash 14348  Vtxcvtx 28975  Edgcedg 29026  USGraphcusgr 29128  ComplUSGraphccusgr 29389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-vtx 28977  df-iedg 28978  df-edg 29027  df-uhgr 29037  df-upgr 29061  df-umgr 29062  df-uspgr 29129  df-usgr 29130  df-fusgr 29296  df-nbgr 29312  df-uvtx 29365  df-cplgr 29390  df-cusgr 29391
This theorem is referenced by:  fusgrmaxsize  29444
  Copyright terms: Public domain W3C validator