![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sizusglecusg | Structured version Visualization version GIF version |
Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
usgrsscusgra.h | ⊢ 𝑉 = (Vtx‘𝐻) |
usgrsscusgra.f | ⊢ 𝐹 = (Edg‘𝐻) |
Ref | Expression |
---|---|
sizusglecusg | ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | fvexi 6915 | . . . . . . . 8 ⊢ 𝐸 ∈ V |
3 | resiexg 7925 | . . . . . . . 8 ⊢ (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V) | |
4 | 2, 3 | mp1i 13 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V) |
5 | fusgrmaxsize.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | usgrsscusgra.h | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐻) | |
7 | usgrsscusgra.f | . . . . . . . 8 ⊢ 𝐹 = (Edg‘𝐻) | |
8 | 5, 1, 6, 7 | sizusglecusglem1 29398 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) |
9 | f1eq1 6793 | . . . . . . 7 ⊢ (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸–1-1→𝐹 ↔ ( I ↾ 𝐸):𝐸–1-1→𝐹)) | |
10 | 4, 8, 9 | spcedv 3584 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
11 | 10 | adantl 480 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
12 | hashdom 14396 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) | |
13 | 12 | adantr 479 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) |
14 | brdomg 8987 | . . . . . . . 8 ⊢ (𝐹 ∈ Fin → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) | |
15 | 14 | adantl 480 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
16 | 15 | adantr 479 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
17 | 13, 16 | bitrd 278 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
18 | 11, 17 | mpbird 256 | . . . 4 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹)) |
19 | 18 | exp31 418 | . . 3 ⊢ (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
20 | 5, 1, 6, 7 | sizusglecusglem2 29399 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
21 | 20 | pm2.24d 151 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))) |
22 | 21 | 3expia 1118 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))) |
23 | 22 | com13 88 | . . 3 ⊢ (¬ 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
24 | 19, 23 | pm2.61i 182 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
25 | 7 | fvexi 6915 | . . . 4 ⊢ 𝐹 ∈ V |
26 | nfile 14376 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹)) | |
27 | 2, 25, 26 | mp3an12 1448 | . . 3 ⊢ (¬ 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)) |
28 | 27 | a1d 25 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
29 | 24, 28 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3462 class class class wbr 5153 I cid 5579 ↾ cres 5684 –1-1→wf1 6551 ‘cfv 6554 ≼ cdom 8972 Fincfn 8974 ≤ cle 11299 ♯chash 14347 Vtxcvtx 28932 Edgcedg 28983 USGraphcusgr 29085 ComplUSGraphccusgr 29346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12597 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 df-vtx 28934 df-iedg 28935 df-edg 28984 df-uhgr 28994 df-upgr 29018 df-umgr 29019 df-uspgr 29086 df-usgr 29087 df-fusgr 29253 df-nbgr 29269 df-uvtx 29322 df-cplgr 29347 df-cusgr 29348 |
This theorem is referenced by: fusgrmaxsize 29401 |
Copyright terms: Public domain | W3C validator |