![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sizusglecusg | Structured version Visualization version GIF version |
Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
Ref | Expression |
---|---|
fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
usgrsscusgra.h | ⊢ 𝑉 = (Vtx‘𝐻) |
usgrsscusgra.f | ⊢ 𝐹 = (Edg‘𝐻) |
Ref | Expression |
---|---|
sizusglecusg | ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | fvexi 6906 | . . . . . . . 8 ⊢ 𝐸 ∈ V |
3 | resiexg 7905 | . . . . . . . 8 ⊢ (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V) | |
4 | 2, 3 | mp1i 13 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V) |
5 | fusgrmaxsize.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | usgrsscusgra.h | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐻) | |
7 | usgrsscusgra.f | . . . . . . . 8 ⊢ 𝐹 = (Edg‘𝐻) | |
8 | 5, 1, 6, 7 | sizusglecusglem1 28718 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) |
9 | f1eq1 6783 | . . . . . . 7 ⊢ (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸–1-1→𝐹 ↔ ( I ↾ 𝐸):𝐸–1-1→𝐹)) | |
10 | 4, 8, 9 | spcedv 3589 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
11 | 10 | adantl 483 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
12 | hashdom 14339 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) | |
13 | 12 | adantr 482 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) |
14 | brdomg 8952 | . . . . . . . 8 ⊢ (𝐹 ∈ Fin → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) | |
15 | 14 | adantl 483 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
16 | 15 | adantr 482 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
17 | 13, 16 | bitrd 279 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
18 | 11, 17 | mpbird 257 | . . . 4 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹)) |
19 | 18 | exp31 421 | . . 3 ⊢ (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
20 | 5, 1, 6, 7 | sizusglecusglem2 28719 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
21 | 20 | pm2.24d 151 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))) |
22 | 21 | 3expia 1122 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))) |
23 | 22 | com13 88 | . . 3 ⊢ (¬ 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
24 | 19, 23 | pm2.61i 182 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
25 | 7 | fvexi 6906 | . . . 4 ⊢ 𝐹 ∈ V |
26 | nfile 14319 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹)) | |
27 | 2, 25, 26 | mp3an12 1452 | . . 3 ⊢ (¬ 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)) |
28 | 27 | a1d 25 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
29 | 24, 28 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 I cid 5574 ↾ cres 5679 –1-1→wf1 6541 ‘cfv 6544 ≼ cdom 8937 Fincfn 8939 ≤ cle 11249 ♯chash 14290 Vtxcvtx 28256 Edgcedg 28307 USGraphcusgr 28409 ComplUSGraphccusgr 28667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 df-vtx 28258 df-iedg 28259 df-edg 28308 df-uhgr 28318 df-upgr 28342 df-umgr 28343 df-uspgr 28410 df-usgr 28411 df-fusgr 28574 df-nbgr 28590 df-uvtx 28643 df-cplgr 28668 df-cusgr 28669 |
This theorem is referenced by: fusgrmaxsize 28721 |
Copyright terms: Public domain | W3C validator |