MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sizusglecusg Structured version   Visualization version   GIF version

Theorem sizusglecusg 27551
Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
sizusglecusg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))

Proof of Theorem sizusglecusg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
21fvexi 6731 . . . . . . . 8 𝐸 ∈ V
3 resiexg 7692 . . . . . . . 8 (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V)
42, 3mp1i 13 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V)
5 fusgrmaxsize.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
6 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
7 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
85, 1, 6, 7sizusglecusglem1 27549 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸1-1𝐹)
9 f1eq1 6610 . . . . . . 7 (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸1-1𝐹 ↔ ( I ↾ 𝐸):𝐸1-1𝐹))
104, 8, 9spcedv 3513 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸1-1𝐹)
1110adantl 485 . . . . 5 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸1-1𝐹)
12 hashdom 13946 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸𝐹))
1312adantr 484 . . . . . 6 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸𝐹))
14 brdomg 8638 . . . . . . . 8 (𝐹 ∈ Fin → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1514adantl 485 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1615adantr 484 . . . . . 6 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸𝐹 ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1713, 16bitrd 282 . . . . 5 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸1-1𝐹))
1811, 17mpbird 260 . . . 4 (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹))
1918exp31 423 . . 3 (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))))
205, 1, 6, 7sizusglecusglem2 27550 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin)
2120pm2.24d 154 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))
22213expia 1123 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))))
2322com13 88 . . 3 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))))
2419, 23pm2.61i 185 . 2 (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))
257fvexi 6731 . . . 4 𝐹 ∈ V
26 nfile 13926 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹))
272, 25, 26mp3an12 1453 . . 3 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))
2827a1d 25 . 2 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))
2924, 28pm2.61i 185 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  Vcvv 3408   class class class wbr 5053   I cid 5454  cres 5553  1-1wf1 6377  cfv 6380  cdom 8624  Fincfn 8626  cle 10868  chash 13896  Vtxcvtx 27087  Edgcedg 27138  USGraphcusgr 27240  ComplUSGraphccusgr 27498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-hash 13897  df-vtx 27089  df-iedg 27090  df-edg 27139  df-uhgr 27149  df-upgr 27173  df-umgr 27174  df-uspgr 27241  df-usgr 27242  df-fusgr 27405  df-nbgr 27421  df-uvtx 27474  df-cplgr 27499  df-cusgr 27500
This theorem is referenced by:  fusgrmaxsize  27552
  Copyright terms: Public domain W3C validator