| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sizusglecusg | Structured version Visualization version GIF version | ||
| Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| Ref | Expression |
|---|---|
| fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
| usgrsscusgra.h | ⊢ 𝑉 = (Vtx‘𝐻) |
| usgrsscusgra.f | ⊢ 𝐹 = (Edg‘𝐻) |
| Ref | Expression |
|---|---|
| sizusglecusg | ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrmaxsize.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | 1 | fvexi 6890 | . . . . . . . 8 ⊢ 𝐸 ∈ V |
| 3 | resiexg 7908 | . . . . . . . 8 ⊢ (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V) | |
| 4 | 2, 3 | mp1i 13 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V) |
| 5 | fusgrmaxsize.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | usgrsscusgra.h | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐻) | |
| 7 | usgrsscusgra.f | . . . . . . . 8 ⊢ 𝐹 = (Edg‘𝐻) | |
| 8 | 5, 1, 6, 7 | sizusglecusglem1 29441 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) |
| 9 | f1eq1 6769 | . . . . . . 7 ⊢ (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸–1-1→𝐹 ↔ ( I ↾ 𝐸):𝐸–1-1→𝐹)) | |
| 10 | 4, 8, 9 | spcedv 3577 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
| 12 | hashdom 14397 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) |
| 14 | brdomg 8971 | . . . . . . . 8 ⊢ (𝐹 ∈ Fin → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
| 17 | 13, 16 | bitrd 279 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
| 18 | 11, 17 | mpbird 257 | . . . 4 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹)) |
| 19 | 18 | exp31 419 | . . 3 ⊢ (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
| 20 | 5, 1, 6, 7 | sizusglecusglem2 29442 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
| 21 | 20 | pm2.24d 151 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))) |
| 22 | 21 | 3expia 1121 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))) |
| 23 | 22 | com13 88 | . . 3 ⊢ (¬ 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
| 24 | 19, 23 | pm2.61i 182 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
| 25 | 7 | fvexi 6890 | . . . 4 ⊢ 𝐹 ∈ V |
| 26 | nfile 14377 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹)) | |
| 27 | 2, 25, 26 | mp3an12 1453 | . . 3 ⊢ (¬ 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)) |
| 28 | 27 | a1d 25 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
| 29 | 24, 28 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 I cid 5547 ↾ cres 5656 –1-1→wf1 6528 ‘cfv 6531 ≼ cdom 8957 Fincfn 8959 ≤ cle 11270 ♯chash 14348 Vtxcvtx 28975 Edgcedg 29026 USGraphcusgr 29128 ComplUSGraphccusgr 29389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-vtx 28977 df-iedg 28978 df-edg 29027 df-uhgr 29037 df-upgr 29061 df-umgr 29062 df-uspgr 29129 df-usgr 29130 df-fusgr 29296 df-nbgr 29312 df-uvtx 29365 df-cplgr 29390 df-cusgr 29391 |
| This theorem is referenced by: fusgrmaxsize 29444 |
| Copyright terms: Public domain | W3C validator |