| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sizusglecusg | Structured version Visualization version GIF version | ||
| Description: The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
| Ref | Expression |
|---|---|
| fusgrmaxsize.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| fusgrmaxsize.e | ⊢ 𝐸 = (Edg‘𝐺) |
| usgrsscusgra.h | ⊢ 𝑉 = (Vtx‘𝐻) |
| usgrsscusgra.f | ⊢ 𝐹 = (Edg‘𝐻) |
| Ref | Expression |
|---|---|
| sizusglecusg | ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrmaxsize.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | 1 | fvexi 6875 | . . . . . . . 8 ⊢ 𝐸 ∈ V |
| 3 | resiexg 7891 | . . . . . . . 8 ⊢ (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V) | |
| 4 | 2, 3 | mp1i 13 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸) ∈ V) |
| 5 | fusgrmaxsize.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | usgrsscusgra.h | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐻) | |
| 7 | usgrsscusgra.f | . . . . . . . 8 ⊢ 𝐹 = (Edg‘𝐻) | |
| 8 | 5, 1, 6, 7 | sizusglecusglem1 29396 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) |
| 9 | f1eq1 6754 | . . . . . . 7 ⊢ (𝑓 = ( I ↾ 𝐸) → (𝑓:𝐸–1-1→𝐹 ↔ ( I ↾ 𝐸):𝐸–1-1→𝐹)) | |
| 10 | 4, 8, 9 | spcedv 3567 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ∃𝑓 𝑓:𝐸–1-1→𝐹) |
| 12 | hashdom 14351 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ 𝐸 ≼ 𝐹)) |
| 14 | brdomg 8933 | . . . . . . . 8 ⊢ (𝐹 ∈ Fin → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (𝐸 ≼ 𝐹 ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
| 17 | 13, 16 | bitrd 279 | . . . . 5 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → ((♯‘𝐸) ≤ (♯‘𝐹) ↔ ∃𝑓 𝑓:𝐸–1-1→𝐹)) |
| 18 | 11, 17 | mpbird 257 | . . . 4 ⊢ (((𝐸 ∈ Fin ∧ 𝐹 ∈ Fin) ∧ (𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph)) → (♯‘𝐸) ≤ (♯‘𝐹)) |
| 19 | 18 | exp31 419 | . . 3 ⊢ (𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
| 20 | 5, 1, 6, 7 | sizusglecusglem2 29397 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
| 21 | 20 | pm2.24d 151 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹))) |
| 22 | 21 | 3expia 1121 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝐹 ∈ Fin → (¬ 𝐸 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)))) |
| 23 | 22 | com13 88 | . . 3 ⊢ (¬ 𝐸 ∈ Fin → (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)))) |
| 24 | 19, 23 | pm2.61i 182 | . 2 ⊢ (𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
| 25 | 7 | fvexi 6875 | . . . 4 ⊢ 𝐹 ∈ V |
| 26 | nfile 14331 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin) → (♯‘𝐸) ≤ (♯‘𝐹)) | |
| 27 | 2, 25, 26 | mp3an12 1453 | . . 3 ⊢ (¬ 𝐹 ∈ Fin → (♯‘𝐸) ≤ (♯‘𝐹)) |
| 28 | 27 | a1d 25 | . 2 ⊢ (¬ 𝐹 ∈ Fin → ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹))) |
| 29 | 24, 28 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 I cid 5535 ↾ cres 5643 –1-1→wf1 6511 ‘cfv 6514 ≼ cdom 8919 Fincfn 8921 ≤ cle 11216 ♯chash 14302 Vtxcvtx 28930 Edgcedg 28981 USGraphcusgr 29083 ComplUSGraphccusgr 29344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-fusgr 29251 df-nbgr 29267 df-uvtx 29320 df-cplgr 29345 df-cusgr 29346 |
| This theorem is referenced by: fusgrmaxsize 29399 |
| Copyright terms: Public domain | W3C validator |