Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4b Structured version   Visualization version   GIF version

Theorem lighneallem4b 44949
Description: Lemma 2 for lighneallem4 44950. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4b ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem lighneallem4b
StepHypRef Expression
1 2z 12282 . . 3 2 ∈ ℤ
21a1i 11 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ∈ ℤ)
3 fzfid 13621 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (0...(𝑀 − 1)) ∈ Fin)
4 neg1z 12286 . . . . . . 7 -1 ∈ ℤ
5 elfznn0 13278 . . . . . . 7 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
6 zexpcl 13725 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
74, 5, 6sylancr 586 . . . . . 6 (𝑘 ∈ (0...(𝑀 − 1)) → (-1↑𝑘) ∈ ℤ)
87adantl 481 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
9 eluzge2nn0 12556 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ0)
1110adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝐴 ∈ ℕ0)
125adantl 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝑘 ∈ ℕ0)
1311, 12nn0expcld 13889 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℕ0)
1413nn0zd 12353 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℤ)
158, 14zmulcld 12361 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
163, 15fsumzcl 15375 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
17163adant3 1130 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
18 simp1 1134 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
19 3z 12283 . . . . 5 3 ∈ ℤ
2019a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ∈ ℤ)
21 eluzelz 12521 . . . . 5 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
22213ad2ant2 1132 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
23 eluz2 12517 . . . . . . 7 (𝑀 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
24 2re 11977 . . . . . . . . . . . 12 2 ∈ ℝ
2524a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 2 ∈ ℝ)
26 zre 12253 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2725, 26leloed 11048 . . . . . . . . . 10 (𝑀 ∈ ℤ → (2 ≤ 𝑀 ↔ (2 < 𝑀 ∨ 2 = 𝑀)))
28 zltp1le 12300 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
291, 28mpan 686 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
3029biimpd 228 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (2 < 𝑀 → (2 + 1) ≤ 𝑀))
31 df-3 11967 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3231breq1i 5077 . . . . . . . . . . . . . . 15 (3 ≤ 𝑀 ↔ (2 + 1) ≤ 𝑀)
3330, 32syl6ibr 251 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀))
3433a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑀 → (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀)))
3534com13 88 . . . . . . . . . . . 12 (2 < 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
36 z2even 16007 . . . . . . . . . . . . . . 15 2 ∥ 2
37 breq2 5074 . . . . . . . . . . . . . . 15 (2 = 𝑀 → (2 ∥ 2 ↔ 2 ∥ 𝑀))
3836, 37mpbii 232 . . . . . . . . . . . . . 14 (2 = 𝑀 → 2 ∥ 𝑀)
3938pm2.24d 151 . . . . . . . . . . . . 13 (2 = 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4039a1d 25 . . . . . . . . . . . 12 (2 = 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4135, 40jaoi 853 . . . . . . . . . . 11 ((2 < 𝑀 ∨ 2 = 𝑀) → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4241com12 32 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((2 < 𝑀 ∨ 2 = 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4327, 42sylbid 239 . . . . . . . . 9 (𝑀 ∈ ℤ → (2 ≤ 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4443imp 406 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
45443adant1 1128 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4623, 45sylbi 216 . . . . . 6 (𝑀 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4746imp 406 . . . . 5 ((𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
48473adant1 1128 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
49 eluz2 12517 . . . 4 (𝑀 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 3 ≤ 𝑀))
5020, 22, 48, 49syl3anbrc 1341 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ (ℤ‘3))
51 eluzelcn 12523 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
52513ad2ant1 1131 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ ℂ)
53 eluz2nn 12553 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
54533ad2ant2 1132 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
55 simp3 1136 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
5652, 54, 55oddpwp1fsum 16029 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
5756eqcomd 2744 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1))
58 eluzge2nn0 12556 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
5958adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝑀 ∈ ℕ0)
6010, 59nn0expcld 13889 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℕ0)
6160nn0cnd 12225 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℂ)
62 peano2cn 11077 . . . . . . . 8 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀) + 1) ∈ ℂ)
6361, 62syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → ((𝐴𝑀) + 1) ∈ ℂ)
64633adant3 1130 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) ∈ ℂ)
6517zcnd 12356 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
66 eluz2nn 12553 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
6766peano2nnd 11920 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℕ)
6867nncnd 11919 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℂ)
6967nnne0d 11953 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≠ 0)
7068, 69jca 511 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
71703ad2ant1 1131 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
72 divmul 11566 . . . . . 6 ((((𝐴𝑀) + 1) ∈ ℂ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ ∧ ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0)) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7364, 65, 71, 72syl3anc 1369 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7457, 73mpbird 256 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → (((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7574eqcomd 2744 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1)))
76 lighneallem4a 44948 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7718, 50, 75, 76syl3anc 1369 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
78 eluz2 12517 . 2 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ ∧ 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
792, 17, 77, 78syl3anbrc 1341 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892
This theorem is referenced by:  lighneallem4  44950
  Copyright terms: Public domain W3C validator