Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4b Structured version   Visualization version   GIF version

Theorem lighneallem4b 43608
Description: Lemma 2 for lighneallem4 43609. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4b ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem lighneallem4b
StepHypRef Expression
1 2z 12006 . . 3 2 ∈ ℤ
21a1i 11 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ∈ ℤ)
3 fzfid 13334 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (0...(𝑀 − 1)) ∈ Fin)
4 neg1z 12010 . . . . . . 7 -1 ∈ ℤ
5 elfznn0 12993 . . . . . . 7 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
6 zexpcl 13437 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
74, 5, 6sylancr 587 . . . . . 6 (𝑘 ∈ (0...(𝑀 − 1)) → (-1↑𝑘) ∈ ℤ)
87adantl 482 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
9 eluzge2nn0 12279 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
109adantr 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ0)
1110adantr 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝐴 ∈ ℕ0)
125adantl 482 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝑘 ∈ ℕ0)
1311, 12nn0expcld 13600 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℕ0)
1413nn0zd 12077 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℤ)
158, 14zmulcld 12085 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
163, 15fsumzcl 15084 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
17163adant3 1126 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
18 simp1 1130 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
19 3z 12007 . . . . 5 3 ∈ ℤ
2019a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ∈ ℤ)
21 eluzelz 12245 . . . . 5 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
22213ad2ant2 1128 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
23 eluz2 12241 . . . . . . 7 (𝑀 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
24 2re 11703 . . . . . . . . . . . 12 2 ∈ ℝ
2524a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 2 ∈ ℝ)
26 zre 11977 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2725, 26leloed 10775 . . . . . . . . . 10 (𝑀 ∈ ℤ → (2 ≤ 𝑀 ↔ (2 < 𝑀 ∨ 2 = 𝑀)))
28 zltp1le 12024 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
291, 28mpan 686 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
3029biimpd 230 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (2 < 𝑀 → (2 + 1) ≤ 𝑀))
31 df-3 11693 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3231breq1i 5069 . . . . . . . . . . . . . . 15 (3 ≤ 𝑀 ↔ (2 + 1) ≤ 𝑀)
3330, 32syl6ibr 253 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀))
3433a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑀 → (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀)))
3534com13 88 . . . . . . . . . . . 12 (2 < 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
36 z2even 15712 . . . . . . . . . . . . . . 15 2 ∥ 2
37 breq2 5066 . . . . . . . . . . . . . . 15 (2 = 𝑀 → (2 ∥ 2 ↔ 2 ∥ 𝑀))
3836, 37mpbii 234 . . . . . . . . . . . . . 14 (2 = 𝑀 → 2 ∥ 𝑀)
3938pm2.24d 154 . . . . . . . . . . . . 13 (2 = 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4039a1d 25 . . . . . . . . . . . 12 (2 = 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4135, 40jaoi 853 . . . . . . . . . . 11 ((2 < 𝑀 ∨ 2 = 𝑀) → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4241com12 32 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((2 < 𝑀 ∨ 2 = 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4327, 42sylbid 241 . . . . . . . . 9 (𝑀 ∈ ℤ → (2 ≤ 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4443imp 407 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
45443adant1 1124 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4623, 45sylbi 218 . . . . . 6 (𝑀 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4746imp 407 . . . . 5 ((𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
48473adant1 1124 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
49 eluz2 12241 . . . 4 (𝑀 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 3 ≤ 𝑀))
5020, 22, 48, 49syl3anbrc 1337 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ (ℤ‘3))
51 eluzelcn 12247 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
52513ad2ant1 1127 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ ℂ)
53 eluz2nn 12276 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
54533ad2ant2 1128 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
55 simp3 1132 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
5652, 54, 55oddpwp1fsum 15735 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
5756eqcomd 2831 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1))
58 eluzge2nn0 12279 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
5958adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝑀 ∈ ℕ0)
6010, 59nn0expcld 13600 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℕ0)
6160nn0cnd 11949 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℂ)
62 peano2cn 10804 . . . . . . . 8 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀) + 1) ∈ ℂ)
6361, 62syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → ((𝐴𝑀) + 1) ∈ ℂ)
64633adant3 1126 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) ∈ ℂ)
6517zcnd 12080 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
66 eluz2nn 12276 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
6766peano2nnd 11647 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℕ)
6867nncnd 11646 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℂ)
6967nnne0d 11679 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≠ 0)
7068, 69jca 512 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
71703ad2ant1 1127 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
72 divmul 11293 . . . . . 6 ((((𝐴𝑀) + 1) ∈ ℂ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ ∧ ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0)) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7364, 65, 71, 72syl3anc 1365 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7457, 73mpbird 258 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → (((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7574eqcomd 2831 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1)))
76 lighneallem4a 43607 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7718, 50, 75, 76syl3anc 1365 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
78 eluz2 12241 . 2 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ ∧ 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
792, 17, 77, 78syl3anbrc 1337 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  3c3 11685  0cn0 11889  cz 11973  cuz 12235  ...cfz 12885  cexp 13422  Σcsu 15035  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-dvds 15600
This theorem is referenced by:  lighneallem4  43609
  Copyright terms: Public domain W3C validator