Proof of Theorem lighneallem4b
Step | Hyp | Ref
| Expression |
1 | | 2z 12352 |
. . 3
⊢ 2 ∈
ℤ |
2 | 1 | a1i 11 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 2 ∈ ℤ) |
3 | | fzfid 13693 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
→ (0...(𝑀 − 1))
∈ Fin) |
4 | | neg1z 12356 |
. . . . . . 7
⊢ -1 ∈
ℤ |
5 | | elfznn0 13349 |
. . . . . . 7
⊢ (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0) |
6 | | zexpcl 13797 |
. . . . . . 7
⊢ ((-1
∈ ℤ ∧ 𝑘
∈ ℕ0) → (-1↑𝑘) ∈ ℤ) |
7 | 4, 5, 6 | sylancr 587 |
. . . . . 6
⊢ (𝑘 ∈ (0...(𝑀 − 1)) → (-1↑𝑘) ∈
ℤ) |
8 | 7 | adantl 482 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
∧ 𝑘 ∈ (0...(𝑀 − 1))) →
(-1↑𝑘) ∈
ℤ) |
9 | | eluzge2nn0 12627 |
. . . . . . . . 9
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈
ℕ0) |
10 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
→ 𝐴 ∈
ℕ0) |
11 | 10 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝐴 ∈
ℕ0) |
12 | 5 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝑘 ∈
ℕ0) |
13 | 11, 12 | nn0expcld 13961 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴↑𝑘) ∈
ℕ0) |
14 | 13 | nn0zd 12424 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴↑𝑘) ∈ ℤ) |
15 | 8, 14 | zmulcld 12432 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
∧ 𝑘 ∈ (0...(𝑀 − 1))) →
((-1↑𝑘) ·
(𝐴↑𝑘)) ∈ ℤ) |
16 | 3, 15 | fsumzcl 15447 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘)) ∈ ℤ) |
17 | 16 | 3adant3 1131 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘)) ∈ ℤ) |
18 | | simp1 1135 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 𝐴 ∈
(ℤ≥‘2)) |
19 | | 3z 12353 |
. . . . 5
⊢ 3 ∈
ℤ |
20 | 19 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 3 ∈ ℤ) |
21 | | eluzelz 12592 |
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℤ) |
22 | 21 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 𝑀 ∈
ℤ) |
23 | | eluz2 12588 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤
𝑀)) |
24 | | 2re 12047 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
25 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 2 ∈
ℝ) |
26 | | zre 12323 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
27 | 25, 26 | leloed 11118 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (2 ≤
𝑀 ↔ (2 < 𝑀 ∨ 2 = 𝑀))) |
28 | | zltp1le 12370 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℤ ∧ 𝑀
∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) |
29 | 1, 28 | mpan 687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → (2 <
𝑀 ↔ (2 + 1) ≤ 𝑀)) |
30 | 29 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → (2 <
𝑀 → (2 + 1) ≤ 𝑀)) |
31 | | df-3 12037 |
. . . . . . . . . . . . . . . 16
⊢ 3 = (2 +
1) |
32 | 31 | breq1i 5081 |
. . . . . . . . . . . . . . 15
⊢ (3 ≤
𝑀 ↔ (2 + 1) ≤ 𝑀) |
33 | 30, 32 | syl6ibr 251 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → (2 <
𝑀 → 3 ≤ 𝑀)) |
34 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (¬ 2
∥ 𝑀 → (𝑀 ∈ ℤ → (2 <
𝑀 → 3 ≤ 𝑀))) |
35 | 34 | com13 88 |
. . . . . . . . . . . 12
⊢ (2 <
𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥
𝑀 → 3 ≤ 𝑀))) |
36 | | z2even 16079 |
. . . . . . . . . . . . . . 15
⊢ 2 ∥
2 |
37 | | breq2 5078 |
. . . . . . . . . . . . . . 15
⊢ (2 =
𝑀 → (2 ∥ 2
↔ 2 ∥ 𝑀)) |
38 | 36, 37 | mpbii 232 |
. . . . . . . . . . . . . 14
⊢ (2 =
𝑀 → 2 ∥ 𝑀) |
39 | 38 | pm2.24d 151 |
. . . . . . . . . . . . 13
⊢ (2 =
𝑀 → (¬ 2 ∥
𝑀 → 3 ≤ 𝑀)) |
40 | 39 | a1d 25 |
. . . . . . . . . . . 12
⊢ (2 =
𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥
𝑀 → 3 ≤ 𝑀))) |
41 | 35, 40 | jaoi 854 |
. . . . . . . . . . 11
⊢ ((2 <
𝑀 ∨ 2 = 𝑀) → (𝑀 ∈ ℤ → (¬ 2 ∥
𝑀 → 3 ≤ 𝑀))) |
42 | 41 | com12 32 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → ((2 <
𝑀 ∨ 2 = 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))) |
43 | 27, 42 | sylbid 239 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (2 ≤
𝑀 → (¬ 2 ∥
𝑀 → 3 ≤ 𝑀))) |
44 | 43 | imp 407 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 2 ≤
𝑀) → (¬ 2 ∥
𝑀 → 3 ≤ 𝑀)) |
45 | 44 | 3adant1 1129 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)) |
46 | 23, 45 | sylbi 216 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘2) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)) |
47 | 46 | imp 407 |
. . . . 5
⊢ ((𝑀 ∈
(ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀) |
48 | 47 | 3adant1 1129 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 3 ≤ 𝑀) |
49 | | eluz2 12588 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 3 ≤
𝑀)) |
50 | 20, 22, 48, 49 | syl3anbrc 1342 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 𝑀 ∈
(ℤ≥‘3)) |
51 | | eluzelcn 12594 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℂ) |
52 | 51 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 𝐴 ∈
ℂ) |
53 | | eluz2nn 12624 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℕ) |
54 | 53 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 𝑀 ∈
ℕ) |
55 | | simp3 1137 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ ¬ 2 ∥ 𝑀) |
56 | 52, 54, 55 | oddpwp1fsum 16101 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ ((𝐴↑𝑀) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)))) |
57 | 56 | eqcomd 2744 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ ((𝐴 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘))) = ((𝐴↑𝑀) + 1)) |
58 | | eluzge2nn0 12627 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈
ℕ0) |
59 | 58 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
→ 𝑀 ∈
ℕ0) |
60 | 10, 59 | nn0expcld 13961 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
→ (𝐴↑𝑀) ∈
ℕ0) |
61 | 60 | nn0cnd 12295 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
→ (𝐴↑𝑀) ∈
ℂ) |
62 | | peano2cn 11147 |
. . . . . . . 8
⊢ ((𝐴↑𝑀) ∈ ℂ → ((𝐴↑𝑀) + 1) ∈ ℂ) |
63 | 61, 62 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2))
→ ((𝐴↑𝑀) + 1) ∈
ℂ) |
64 | 63 | 3adant3 1131 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ ((𝐴↑𝑀) + 1) ∈
ℂ) |
65 | 17 | zcnd 12427 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘)) ∈ ℂ) |
66 | | eluz2nn 12624 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℕ) |
67 | 66 | peano2nnd 11990 |
. . . . . . . . 9
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 + 1) ∈ ℕ) |
68 | 67 | nncnd 11989 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 + 1) ∈ ℂ) |
69 | 67 | nnne0d 12023 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 + 1) ≠ 0) |
70 | 68, 69 | jca 512 |
. . . . . . 7
⊢ (𝐴 ∈
(ℤ≥‘2) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0)) |
71 | 70 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ ((𝐴 + 1) ∈
ℂ ∧ (𝐴 + 1) ≠
0)) |
72 | | divmul 11636 |
. . . . . 6
⊢ ((((𝐴↑𝑀) + 1) ∈ ℂ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ ℂ ∧ ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0)) → ((((𝐴↑𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘))) = ((𝐴↑𝑀) + 1))) |
73 | 64, 65, 71, 72 | syl3anc 1370 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ ((((𝐴↑𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘))) = ((𝐴↑𝑀) + 1))) |
74 | 57, 73 | mpbird 256 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ (((𝐴↑𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘))) |
75 | 74 | eqcomd 2744 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘)) = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) |
76 | | lighneallem4a 45060 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3)
∧ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘)) = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘))) |
77 | 18, 50, 75, 76 | syl3anc 1370 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ 2 ≤ Σ𝑘
∈ (0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘))) |
78 | | eluz2 12588 |
. 2
⊢
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘)) ∈ (ℤ≥‘2)
↔ (2 ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ ℤ ∧ 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)))) |
79 | 2, 17, 77, 78 | syl3anbrc 1342 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝐴↑𝑘)) ∈
(ℤ≥‘2)) |