MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpneg Structured version   Visualization version   GIF version

Theorem rpneg 12618
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
rpneg ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))

Proof of Theorem rpneg
StepHypRef Expression
1 0re 10835 . . . . . . . 8 0 ∈ ℝ
2 ltle 10921 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
31, 2mpan 690 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
43imp 410 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
54olcd 874 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴))
6 renegcl 11141 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
76pm2.24d 154 . . . . . . . 8 (𝐴 ∈ ℝ → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
87adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
9 ltlen 10933 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
101, 9mpan 690 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
1110biimprd 251 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≠ 0) → 0 < 𝐴))
1211expcomd 420 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (0 ≤ 𝐴 → 0 < 𝐴)))
1312imp 410 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 → 0 < 𝐴))
148, 13jaod 859 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → 0 < 𝐴))
15 simpl 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ)
1614, 15jctild 529 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)))
175, 16impbid2 229 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴)))
18 lenlt 10911 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
191, 18mpan 690 . . . . . . 7 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
20 lt0neg1 11338 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
2120notbid 321 . . . . . . 7 (𝐴 ∈ ℝ → (¬ 𝐴 < 0 ↔ ¬ 0 < -𝐴))
2219, 21bitrd 282 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2322adantr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2423orbi2d 916 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
2517, 24bitrd 282 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
26 ianor 982 . . 3 (¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴))
2725, 26bitr4di 292 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)))
28 elrp 12588 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
29 elrp 12588 . . 3 (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3029notbii 323 . 2 (¬ -𝐴 ∈ ℝ+ ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3127, 28, 303bitr4g 317 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  wcel 2110  wne 2940   class class class wbr 5053  cr 10728  0cc0 10729   < clt 10867  cle 10868  -cneg 11063  +crp 12586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-rp 12587
This theorem is referenced by:  cnpart  14803  angpined  25713  signsply0  32242
  Copyright terms: Public domain W3C validator