MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpneg Structured version   Visualization version   GIF version

Theorem rpneg 12985
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
rpneg ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))

Proof of Theorem rpneg
StepHypRef Expression
1 0re 11176 . . . . . . . 8 0 ∈ ℝ
2 ltle 11262 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
31, 2mpan 690 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
43imp 406 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
54olcd 874 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴))
6 renegcl 11485 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
76pm2.24d 151 . . . . . . . 8 (𝐴 ∈ ℝ → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
9 ltlen 11275 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
101, 9mpan 690 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
1110biimprd 248 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≠ 0) → 0 < 𝐴))
1211expcomd 416 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (0 ≤ 𝐴 → 0 < 𝐴)))
1312imp 406 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 → 0 < 𝐴))
148, 13jaod 859 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → 0 < 𝐴))
15 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ)
1614, 15jctild 525 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)))
175, 16impbid2 226 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴)))
18 lenlt 11252 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
191, 18mpan 690 . . . . . . 7 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
20 lt0neg1 11684 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
2120notbid 318 . . . . . . 7 (𝐴 ∈ ℝ → (¬ 𝐴 < 0 ↔ ¬ 0 < -𝐴))
2219, 21bitrd 279 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2322adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2423orbi2d 915 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
2517, 24bitrd 279 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
26 ianor 983 . . 3 (¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴))
2725, 26bitr4di 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)))
28 elrp 12953 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
29 elrp 12953 . . 3 (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3029notbii 320 . 2 (¬ -𝐴 ∈ ℝ+ ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3127, 28, 303bitr4g 314 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2109  wne 2925   class class class wbr 5107  cr 11067  0cc0 11068   < clt 11208  cle 11209  -cneg 11406  +crp 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-rp 12952
This theorem is referenced by:  cnpart  15206  angpined  26740  argcj  32672  signsply0  34542
  Copyright terms: Public domain W3C validator