MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpneg Structured version   Visualization version   GIF version

Theorem rpneg 12924
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
rpneg ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))

Proof of Theorem rpneg
StepHypRef Expression
1 0re 11114 . . . . . . . 8 0 ∈ ℝ
2 ltle 11201 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
31, 2mpan 690 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
43imp 406 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
54olcd 874 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴))
6 renegcl 11424 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
76pm2.24d 151 . . . . . . . 8 (𝐴 ∈ ℝ → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
9 ltlen 11214 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
101, 9mpan 690 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
1110biimprd 248 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≠ 0) → 0 < 𝐴))
1211expcomd 416 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (0 ≤ 𝐴 → 0 < 𝐴)))
1312imp 406 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 → 0 < 𝐴))
148, 13jaod 859 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → 0 < 𝐴))
15 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ)
1614, 15jctild 525 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)))
175, 16impbid2 226 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴)))
18 lenlt 11191 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
191, 18mpan 690 . . . . . . 7 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
20 lt0neg1 11623 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
2120notbid 318 . . . . . . 7 (𝐴 ∈ ℝ → (¬ 𝐴 < 0 ↔ ¬ 0 < -𝐴))
2219, 21bitrd 279 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2322adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2423orbi2d 915 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
2517, 24bitrd 279 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
26 ianor 983 . . 3 (¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴))
2725, 26bitr4di 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)))
28 elrp 12892 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
29 elrp 12892 . . 3 (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3029notbii 320 . 2 (¬ -𝐴 ∈ ℝ+ ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3127, 28, 303bitr4g 314 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2111  wne 2928   class class class wbr 5089  cr 11005  0cc0 11006   < clt 11146  cle 11147  -cneg 11345  +crp 12890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-rp 12891
This theorem is referenced by:  cnpart  15147  angpined  26767  argcj  32732  signsply0  34564
  Copyright terms: Public domain W3C validator