Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpneg | Structured version Visualization version GIF version |
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
rpneg | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
2 | ltle 10994 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
3 | 1, 2 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
4 | 3 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
5 | 4 | olcd 870 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴)) |
6 | renegcl 11214 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
7 | 6 | pm2.24d 151 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (¬ -𝐴 ∈ ℝ → 0 < 𝐴)) |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ → 0 < 𝐴)) |
9 | ltlen 11006 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ (0 ≤ 𝐴 ∧ 𝐴 ≠ 0))) | |
10 | 1, 9 | mpan 686 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 ≤ 𝐴 ∧ 𝐴 ≠ 0))) |
11 | 10 | biimprd 247 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ((0 ≤ 𝐴 ∧ 𝐴 ≠ 0) → 0 < 𝐴)) |
12 | 11 | expcomd 416 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (0 ≤ 𝐴 → 0 < 𝐴))) |
13 | 12 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 → 0 < 𝐴)) |
14 | 8, 13 | jaod 855 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → 0 < 𝐴)) |
15 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) | |
16 | 14, 15 | jctild 525 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))) |
17 | 5, 16 | impbid2 225 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴))) |
18 | lenlt 10984 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) | |
19 | 1, 18 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
20 | lt0neg1 11411 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
21 | 20 | notbid 317 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 < 0 ↔ ¬ 0 < -𝐴)) |
22 | 19, 21 | bitrd 278 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴)) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴)) |
24 | 23 | orbi2d 912 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴))) |
25 | 17, 24 | bitrd 278 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴))) |
26 | ianor 978 | . . 3 ⊢ (¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)) | |
27 | 25, 26 | bitr4di 288 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))) |
28 | elrp 12661 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
29 | elrp 12661 | . . 3 ⊢ (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) | |
30 | 29 | notbii 319 | . 2 ⊢ (¬ -𝐴 ∈ ℝ+ ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) |
31 | 27, 28, 30 | 3bitr4g 313 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 -cneg 11136 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-rp 12660 |
This theorem is referenced by: cnpart 14879 angpined 25885 signsply0 32430 |
Copyright terms: Public domain | W3C validator |