MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpneg Structured version   Visualization version   GIF version

Theorem rpneg 12990
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
rpneg ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))

Proof of Theorem rpneg
StepHypRef Expression
1 0re 11200 . . . . . . . 8 0 ∈ ℝ
2 ltle 11286 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
31, 2mpan 688 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
43imp 407 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
54olcd 872 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴))
6 renegcl 11507 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
76pm2.24d 151 . . . . . . . 8 (𝐴 ∈ ℝ → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
87adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ → 0 < 𝐴))
9 ltlen 11299 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
101, 9mpan 688 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 ≤ 𝐴𝐴 ≠ 0)))
1110biimprd 247 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≠ 0) → 0 < 𝐴))
1211expcomd 417 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (0 ≤ 𝐴 → 0 < 𝐴)))
1312imp 407 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 → 0 < 𝐴))
148, 13jaod 857 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → 0 < 𝐴))
15 simpl 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ)
1614, 15jctild 526 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)))
175, 16impbid2 225 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴)))
18 lenlt 11276 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
191, 18mpan 688 . . . . . . 7 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
20 lt0neg1 11704 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
2120notbid 317 . . . . . . 7 (𝐴 ∈ ℝ → (¬ 𝐴 < 0 ↔ ¬ 0 < -𝐴))
2219, 21bitrd 278 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2322adantr 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 ≤ 𝐴 ↔ ¬ 0 < -𝐴))
2423orbi2d 914 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((¬ -𝐴 ∈ ℝ ∨ 0 ≤ 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
2517, 24bitrd 278 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴)))
26 ianor 980 . . 3 (¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴) ↔ (¬ -𝐴 ∈ ℝ ∨ ¬ 0 < -𝐴))
2725, 26bitr4di 288 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)))
28 elrp 12960 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
29 elrp 12960 . . 3 (-𝐴 ∈ ℝ+ ↔ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3029notbii 319 . 2 (¬ -𝐴 ∈ ℝ+ ↔ ¬ (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
3127, 28, 303bitr4g 313 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wcel 2106  wne 2940   class class class wbr 5142  cr 11093  0cc0 11094   < clt 11232  cle 11233  -cneg 11429  +crp 12958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-po 5582  df-so 5583  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-rp 12959
This theorem is referenced by:  cnpart  15171  angpined  26264  signsply0  33457
  Copyright terms: Public domain W3C validator