MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubioo Structured version   Visualization version   GIF version

Theorem ubioo 12456
Description: An open interval does not contain its right endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.)
Assertion
Ref Expression
ubioo ¬ 𝐵 ∈ (𝐴(,)𝐵)

Proof of Theorem ubioo
StepHypRef Expression
1 elioo3g 12453 . . . 4 (𝐵 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐵)))
21simprbi 491 . . 3 (𝐵 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐵𝐵 < 𝐵))
32simprd 490 . 2 (𝐵 ∈ (𝐴(,)𝐵) → 𝐵 < 𝐵)
41simplbi 492 . . . 4 (𝐵 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*))
54simp2d 1174 . . 3 (𝐵 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*)
6 xrltnr 12200 . . 3 (𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵)
75, 6syl 17 . 2 (𝐵 ∈ (𝐴(,)𝐵) → ¬ 𝐵 < 𝐵)
83, 7pm2.65i 186 1 ¬ 𝐵 ∈ (𝐴(,)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 385  w3a 1108  wcel 2157   class class class wbr 4843  (class class class)co 6878  *cxr 10362   < clt 10363  (,)cioo 12424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-ioo 12428
This theorem is referenced by:  lhop  24120  iooinlbub  40471  lptioo2  40607  volioc  40931  fourierdlem60  41126
  Copyright terms: Public domain W3C validator